•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
Search 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Search
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Search
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

نمایش تعداد 1-10 از 11

    • Relevance
    • Title Asc
    • Title Desc
    • سال صعودی
    • سال نزولی
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • خروجی
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Legendre Approximation for Solving Linear HPDEs and Comparison with Taylor and Bernoulli Matrix Methods 

    نوع: Journal Paper
    نویسنده : عمران توحیدی; EMRAN TOHIDI
    سال: 2012
    خلاصه:

    ABSTRACT

    The aim of this study is to give a Legendre polynomial approximation for the solution of the second order linear hyper-bolic partial differential equations (HPDEs) with two variables and constant coefficients. ...

    Numerical solution of time-dependent diffusion equations with nonlocal boundary conditions via a fast matrix approach 

    نوع: Journal Paper
    نویسنده : عمران توحیدی; فائزه توتونیان مشهد; EMRAN TOHIDI; Faezeh Toutounian Mashhad
    سال: 2014
    خلاصه:

    This article contributes a matrix approach by using Taylor approximation to obtain the

    numerical solution of one-dimensional time-dependent parabolic partial differential equations

    (PDEs) subject to nonlocal ...

    Convergence analysis of Bernoulli matrix aproach for one-dimensional matrix hyperbolic equations of the first order 

    نوع: Journal Paper
    نویسنده : عمران توحیدی; فائزه توتونیان مشهد; EMRAN TOHIDI; Faezeh Toutounian Mashhad
    سال: 2014
    خلاصه:

    In this paper, an approximate approach based on Bernoulli operational matrices has been

    presented to obtain the numerical solution of first-order matrix hyperbolic partial differential

    equations under the ...

    A new Bernoulli matrix method for solving second order linear partial differential equations with the convergence analysis 

    نوع: Journal Paper
    نویسنده : فائزه توتونیان مشهد; عمران توحیدی; Faezeh Toutounian Mashhad; EMRAN TOHIDI
    سال: 2013
    خلاصه:

    In this paper, a new matrix approach for solving second order linear partial differential equations (PDEs) under given initial conditions has been proposed. The basic idea includes integrating from the considered PDEs and ...

    An optimized derivative-free form of the Potra–Pták method 

    نوع: Journal Paper
    نویسنده : F.soleymani; Rajni Sharma; Xiaowu Li; عمران توحیدی; EMRAN TOHIDI
    سال: 2012
    خلاصه:

    Abstract



    In this paper, we discuss iterative methods for solving univariate nonlinear equations. First of all, we construct a family of methods with optimal convergence rate 4 based upon the Potra–Pták scheme ...

    Numerical Solution of Linear HPDEs Via Bernoulli Operational Matrix of Differentiation and Comparison with Taylor Matrix Method 

    نوع: Journal Paper
    نویسنده : عمران توحیدی; محمد شیرازیان; EMRAN TOHIDI; Mohammad Shirazian
    سال: 2012
    خلاصه:

    Abstract

    In this paper a new matrix approach for solving linear hyperbolic partial differential equations (HPDEs) is presented. The method is based on the Bernoulli expansion of two-variable functions, which consists ...

    Numerical solution of weakly singular Fredholm integral equations via generalization of the Euler–Maclaurin summation formula 

    نوع: Journal Paper
    نویسنده : رضا بهزادی بیگ دلی; عمران توحیدی; فائزه توتونیان مشهد; Reza Behzadi; EMRAN TOHIDI; Faezeh Toutounian Mashhad
    سال: 2014
    خلاصه:

    Since the classical Euler–Maclaurin summation formula may not be applied for approximating singular integrals, we can not use this formula for obtaining the numerical solution of weakly singular Fredholm integral equations. ...

    Numerical Solution of Two-Dimensional Volterra Integral Equations by Spectral Galerkin Method 

    نوع: Journal Paper
    نویسنده : جعفر صابری نجفی; امیدرضا نویدصمدی; عمران توحیدی; Jafar Saberi- Nadjafi; Omid Navid Samadi; emran tohidi
    سال: 2011
    خلاصه:

    In this paper, we present ultra spherical spectral discontinuous Galerkin method for solving the two-dimensional volterra integral equation (VIE) of the second kind. The Gauss-Legendre quadrature rule is used to ap- proximate ...

    A Collocation Method Based on the Bernoulli Operational Matrix for Solving High-Order Linear Complex Differential Equations in a Rectangular Domain 

    نوع: Journal Paper
    نویسنده : فائزه توتونیان مشهد; عمران توحیدی; Stanford Shateyi; Faezeh Toutounian Mashhad; EMRAN TOHIDI
    سال: 2013
    خلاصه:

    This paper contributes a new matrix method for the solution of high-order linear complex differential equations with variable coefficients in rectangular domains under the considered initial conditions.On the basis of the ...

    Fourier Operational Matrices of Differentiation and Transmission: Introduction and Applications 

    نوع: Journal Paper
    نویسنده : فائزه توتونیان مشهد; عمران توحیدی; A. Kilicman; Faezeh Toutounian Mashhad; EMRAN TOHIDI
    سال: 2013
    خلاصه:

    This paper introduces Fourier operational matrices of differentiation and transmission for solving high-order linear differential and difference equations with constant coefficients. Moreover, we extend our methods for ...

    • 1
    • 2

    نویسنده

    ... View More

    سال

    کلیدواژه

    ... View More

    نوع

    زبان

    نوع محتوا

    عنوان ناشر

    • درباره ما
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    DSpace software copyright © 2019-2022  DuraSpace