•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical solution of time-dependent diffusion equations with nonlocal boundary conditions via a fast matrix approach

نویسنده:
عمران توحیدی
,
فائزه توتونیان مشهد
,
EMRAN TOHIDI
,
Faezeh Toutounian Mashhad
سال
: 2014
چکیده: This article contributes a matrix approach by using Taylor approximation to obtain the

numerical solution of one-dimensional time-dependent parabolic partial differential equations

(PDEs) subject to nonlocal boundary integral conditions. We first impose the initial and boundary

conditions to the main problems and then reach to the associated integro-PDEs. By using operational

matrices and also the completeness of the monomials basis, the obtained integro-PDEs will

be reduced to the generalized Sylvester equations. For solving these algebraic systems, we apply a

famous technique in Krylov subspace iterative methods. A numerical example is considered to show

the efficiency of the proposed idea.
یو آر آی: https://libsearch.um.ac.ir:443/fum/handle/fum/3351844
کلیدواژه(گان): One-dimensional parabolic equation,Nonlocal boundary conditions,Taylor approximation,Operational matrices,Krylov subspace iterative methods,Restarted GMRES
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    Numerical solution of time-dependent diffusion equations with nonlocal boundary conditions via a fast matrix approach

Show full item record

contributor authorعمران توحیدیen
contributor authorفائزه توتونیان مشهدen
contributor authorEMRAN TOHIDIfa
contributor authorFaezeh Toutounian Mashhadfa
date accessioned2020-06-06T13:21:51Z
date available2020-06-06T13:21:51Z
date issued2014
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3351844
description abstractThis article contributes a matrix approach by using Taylor approximation to obtain the

numerical solution of one-dimensional time-dependent parabolic partial differential equations

(PDEs) subject to nonlocal boundary integral conditions. We first impose the initial and boundary

conditions to the main problems and then reach to the associated integro-PDEs. By using operational

matrices and also the completeness of the monomials basis, the obtained integro-PDEs will

be reduced to the generalized Sylvester equations. For solving these algebraic systems, we apply a

famous technique in Krylov subspace iterative methods. A numerical example is considered to show

the efficiency of the proposed idea.
en
languageEnglish
titleNumerical solution of time-dependent diffusion equations with nonlocal boundary conditions via a fast matrix approachen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsOne-dimensional parabolic equationen
subject keywordsNonlocal boundary conditionsen
subject keywordsTaylor approximationen
subject keywordsOperational matricesen
subject keywordsKrylov subspace iterative methodsen
subject keywordsRestarted GMRESen
journal titleJournal of the Egyptian Mathematical Societyfa
pages6-Jan
journal volume0
journal issue0
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1045196.html
identifier articleid1045196
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace