•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new Bernoulli matrix method for solving second order linear partial differential equations with the convergence analysis

نویسنده:
فائزه توتونیان مشهد
,
عمران توحیدی
,
Faezeh Toutounian Mashhad
,
EMRAN TOHIDI
سال
: 2013
چکیده: In this paper, a new matrix approach for solving second order linear partial differential equations (PDEs) under given initial conditions has been proposed. The basic idea includes integrating from the considered PDEs and transforming them to the associated integro-differential equations with partial derivatives. Therefore, Bernoulli operational matrices of differentiation and integration together with the completeness of Bernoulli polynomials can be used for transforming integro-differential equations to the corresponding algebraic equations. A rigorous error analysis in the infinity norm is given provided that the known functions and the exact solution are sufficiently smooth and bounded. A numerical example is included to demonstrate the validity and the applicability of the technique. The results confirm the theoretical prediction.
یو آر آی: https://libsearch.um.ac.ir:443/fum/handle/fum/3348747
کلیدواژه(گان): Second order linear partial differential equation,Double Bernoulli series,Operational matrices of differentiation and integration,Convergence analysis
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    A new Bernoulli matrix method for solving second order linear partial differential equations with the convergence analysis

Show full item record

contributor authorفائزه توتونیان مشهدen
contributor authorعمران توحیدیen
contributor authorFaezeh Toutounian Mashhadfa
contributor authorEMRAN TOHIDIfa
date accessioned2020-06-06T13:16:46Z
date available2020-06-06T13:16:46Z
date issued2013
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3348747
description abstractIn this paper, a new matrix approach for solving second order linear partial differential equations (PDEs) under given initial conditions has been proposed. The basic idea includes integrating from the considered PDEs and transforming them to the associated integro-differential equations with partial derivatives. Therefore, Bernoulli operational matrices of differentiation and integration together with the completeness of Bernoulli polynomials can be used for transforming integro-differential equations to the corresponding algebraic equations. A rigorous error analysis in the infinity norm is given provided that the known functions and the exact solution are sufficiently smooth and bounded. A numerical example is included to demonstrate the validity and the applicability of the technique. The results confirm the theoretical prediction.en
languageEnglish
titleA new Bernoulli matrix method for solving second order linear partial differential equations with the convergence analysisen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsSecond order linear partial differential equationen
subject keywordsDouble Bernoulli seriesen
subject keywordsOperational matrices of differentiation and integrationen
subject keywordsConvergence analysisen
journal titleApplied Mathematics and Computationen
journal titleApplied Mathematics and Computationfa
pages298-310
journal volume223
journal issue1
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1039612.html
identifier articleid1039612
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace