•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

An efficient recurrent neural network model for solving fuzzy non-linear programming problems

نویسنده:
امین منصوری
,
سهراب عفتی
,
محمد اسحاق نژاد
,
Amin Mansoori
,
Sohrab Effati
,
mohammad eshaghnezhad
سال
: 2016
چکیده: In this paper, a representation of a recurrent neural network to solve fuzzy non-linear programming (FNLP) problems is given. The motivation of the paper is to design a new effective one-layer structure recurrent neural network model for solving the FNLP. Here, we change a fuzzy non-linear programming problem to a bi-objective problem.

Furthermore, the bi-objective problem is reduced to a weighting problem and then the Lagrangian dual and the Karush-Kuhn-Tucker (KKT) optimality conditions are constructed.

The simulation results on numerical examples are discussed to demonstrate the performance of our proposed approach
یو آر آی: https://libsearch.um.ac.ir:443/fum/handle/fum/3358129
کلیدواژه(گان): Fuzzy non-linear programming problems · Bi-objective problem · Weighting problem · Recurrent neural network · Globally stable in the sense of Lyapunov · Globally convergent
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    An efficient recurrent neural network model for solving fuzzy non-linear programming problems

Show full item record

contributor authorامین منصوریen
contributor authorسهراب عفتیen
contributor authorمحمد اسحاق نژادen
contributor authorAmin Mansoorifa
contributor authorSohrab Effatifa
contributor authormohammad eshaghnezhadfa
date accessioned2020-06-06T13:31:01Z
date available2020-06-06T13:31:01Z
date issued2016
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3358129
description abstractIn this paper, a representation of a recurrent neural network to solve fuzzy non-linear programming (FNLP) problems is given. The motivation of the paper is to design a new effective one-layer structure recurrent neural network model for solving the FNLP. Here, we change a fuzzy non-linear programming problem to a bi-objective problem.

Furthermore, the bi-objective problem is reduced to a weighting problem and then the Lagrangian dual and the Karush-Kuhn-Tucker (KKT) optimality conditions are constructed.

The simulation results on numerical examples are discussed to demonstrate the performance of our proposed approach
en
languageEnglish
titleAn efficient recurrent neural network model for solving fuzzy non-linear programming problemsen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsFuzzy non-linear programming problems · Bi-objective problem · Weighting problem · Recurrent neural network · Globally stable in the sense of Lyapunov · Globally convergenten
journal titleApplied Intelligencefa
pages308-327
journal volume46
journal issue2
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1058183.html
identifier articleid1058183
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace