•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

An efficient recurrent neural network model for solving fuzzy non-linear programming problems

Author:
امین منصوری
,
سهراب عفتی
,
محمد اسحاق نژاد
,
Amin Mansoori
,
Sohrab Effati
,
mohammad eshaghnezhad
Year
: 2016
Abstract: In this paper, a representation of a recurrent neural network to solve fuzzy non-linear programming (FNLP) problems is given. The motivation of the paper is to design a new effective one-layer structure recurrent neural network model for solving the FNLP. Here, we change a fuzzy non-linear programming problem to a bi-objective problem.

Furthermore, the bi-objective problem is reduced to a weighting problem and then the Lagrangian dual and the Karush-Kuhn-Tucker (KKT) optimality conditions are constructed.

The simulation results on numerical examples are discussed to demonstrate the performance of our proposed approach
URI: https://libsearch.um.ac.ir:443/fum/handle/fum/3358129
Keyword(s): Fuzzy non-linear programming problems · Bi-objective problem · Weighting problem · Recurrent neural network · Globally stable in the sense of Lyapunov · Globally convergent
Collections :
  • ProfDoc
  • Show Full MetaData Hide Full MetaData
  • Statistics

    An efficient recurrent neural network model for solving fuzzy non-linear programming problems

Show full item record

contributor authorامین منصوریen
contributor authorسهراب عفتیen
contributor authorمحمد اسحاق نژادen
contributor authorAmin Mansoorifa
contributor authorSohrab Effatifa
contributor authormohammad eshaghnezhadfa
date accessioned2020-06-06T13:31:01Z
date available2020-06-06T13:31:01Z
date issued2016
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3358129?locale-attribute=en
description abstractIn this paper, a representation of a recurrent neural network to solve fuzzy non-linear programming (FNLP) problems is given. The motivation of the paper is to design a new effective one-layer structure recurrent neural network model for solving the FNLP. Here, we change a fuzzy non-linear programming problem to a bi-objective problem.

Furthermore, the bi-objective problem is reduced to a weighting problem and then the Lagrangian dual and the Karush-Kuhn-Tucker (KKT) optimality conditions are constructed.

The simulation results on numerical examples are discussed to demonstrate the performance of our proposed approach
en
languageEnglish
titleAn efficient recurrent neural network model for solving fuzzy non-linear programming problemsen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsFuzzy non-linear programming problems · Bi-objective problem · Weighting problem · Recurrent neural network · Globally stable in the sense of Lyapunov · Globally convergenten
journal titleApplied Intelligencefa
pages308-327
journal volume46
journal issue2
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1058183.html
identifier articleid1058183
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace