•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal random sample size based on Bayesian prediction of exponential lifetime and application to real data

نویسنده:
جعفر احمدی
,
الهام بصیری
,
S.M.T.K. MirMostafaee
,
Jafar Ahmadi
,
Elham Basiri
سال
: 2016
چکیده: Choosing the sample size is a problem faced by anyone doing a survey of any type. What sample

size do we need?" is one of the most frequently asked questions of statisticians. The answer always

starts with It depends on ...". In this paper, we respond to this question by considering two criteria,

total cost of experiment and mean squared prediction error in prediction problem. Towards this end,

we discuss the problem of Bayesian predicting future observations from an exponential distribution

based on an observed sample, when the information sample size is fixed as well as a random variable.

Some distributions for the information sample size are considered and then for each case we find the

parameter of distribution of the information sample size, such that the point predictor of a future

order statistic has minimum mean squared prediction error when the total cost of experiment is

bounded. To show the usefulness of our results, we present a simulation study. Finally, we apply our

results to some real data sets in life testing.
یو آر آی: https://libsearch.um.ac.ir:443/fum/handle/fum/3354690
کلیدواژه(گان): Bayesian point predictor,Mean squared prediction error,Cost function,Random sample size
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    Optimal random sample size based on Bayesian prediction of exponential lifetime and application to real data

Show full item record

contributor authorجعفر احمدیen
contributor authorالهام بصیریen
contributor authorS.M.T.K. MirMostafaeeen
contributor authorJafar Ahmadifa
contributor authorElham Basirifa
date accessioned2020-06-06T13:26:04Z
date available2020-06-06T13:26:04Z
date issued2016
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3354690
description abstractChoosing the sample size is a problem faced by anyone doing a survey of any type. What sample

size do we need?" is one of the most frequently asked questions of statisticians. The answer always

starts with It depends on ...". In this paper, we respond to this question by considering two criteria,

total cost of experiment and mean squared prediction error in prediction problem. Towards this end,

we discuss the problem of Bayesian predicting future observations from an exponential distribution

based on an observed sample, when the information sample size is fixed as well as a random variable.

Some distributions for the information sample size are considered and then for each case we find the

parameter of distribution of the information sample size, such that the point predictor of a future

order statistic has minimum mean squared prediction error when the total cost of experiment is

bounded. To show the usefulness of our results, we present a simulation study. Finally, we apply our

results to some real data sets in life testing.
en
languageEnglish
titleOptimal random sample size based on Bayesian prediction of exponential lifetime and application to real dataen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsBayesian point predictoren
subject keywordsMean squared prediction erroren
subject keywordsCost functionen
subject keywordsRandom sample sizeen
journal titleJournal of the Korean Statistical Societyfa
pages221-237
journal volume45
journal issue2
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1050111.html
identifier articleid1050111
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace