•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

LAD variable selection for linear models with randomly censored data

Author:
Zhou, Z. - Jiang, R. - Qian, W.
Publisher:
Springer
Year
: 2013
DOI: 10.1007/s00184-012-0387-7
URI: http://libsearch.um.ac.ir:80/fum/handle/fum/579247
Keyword(s): LAD,Linear regression,Oracle property,Randomly censored data
Collections :
  • Latin Articles
  • Show Full MetaData Hide Full MetaData
  • Statistics

    LAD variable selection for linear models with randomly censored data

Show full item record

contributor authorZhou, Z. - Jiang, R. - Qian, W.
date accessioned2020-03-11T15:35:07Z
date available2020-03-11T15:35:07Z
date issued2013
identifier issn0026-1335
identifier other10.1007-s00184-012-0387-7.pdf
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/579247
formatgeneral
languageEnglish
publisherSpringer
titleLAD variable selection for linear models with randomly censored data
typeJournal Paper
contenttypeMetadata Only
identifier padid4432409
subject keywordsLAD
subject keywordsLinear regression
subject keywordsOracle property
subject keywordsRandomly censored data
identifier doi10.1007/s00184-012-0387-7
journal titleMetrika
journal volume76
journal issue2
filesize198409
citations0
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace