•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Use of the artificial neural network and meteorological data for predicting daily global solar radiation in Djelfa, Algeria

Author:
Assas, O. , Bouzgou, H. , Fetah, S. , Salmi, M. , Boursas, A.
Publisher:
IEEE
Year
: 2014
DOI: 10.1109/CICYBS.2014.7013367
URI: https://libsearch.um.ac.ir:443/fum/handle/fum/997273
Keyword(s): Bayes methods,computer network security,decision trees,learning (artificial intelligence),pattern classification,public domain software,Bro open-source system,CART decision tree classifier,Corsaro open-source system,DDoS attacks,IP addresses,NIDS,Naive Bayes machine learning classifier,backscatter darknet traffic,network intrusion detection systems,supervised learning techniques,Backscatter,Computer crime,Decision trees,IP networks,Ports (Computers),Protocols,Training,Back
Collections :
  • Latin Articles
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Use of the artificial neural network and meteorological data for predicting daily global solar radiation in Djelfa, Algeria

Show full item record

date accessioned2020-03-12T19:58:38Z
date available2020-03-12T19:58:38Z
date issued2014
identifier other6843807.pdf
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/997273?locale-attribute=en
formatgeneral
languageEnglish
publisherIEEE
titleUse of the artificial neural network and meteorological data for predicting daily global solar radiation in Djelfa, Algeria
typeConference Paper
contenttypeMetadata Only
identifier padid8117188
subject keywordsBayes methods
subject keywordscomputer network security
subject keywordsdecision trees
subject keywordslearning (artificial intelligence)
subject keywordspattern classification
subject keywordspublic domain software
subject keywordsBro open-source system
subject keywordsCART decision tree classifier
subject keywordsCorsaro open-source system
subject keywordsDDoS attacks
subject keywordsIP addresses
subject keywordsNIDS
subject keywordsNaive Bayes machine learning classifier
subject keywordsbackscatter darknet traffic
subject keywordsnetwork intrusion detection systems
subject keywordssupervised learning techniques
subject keywordsBackscatter
subject keywordsComputer crime
subject keywordsDecision trees
subject keywordsIP networks
subject keywordsPorts (Computers)
subject keywordsProtocols
subject keywordsTraining
subject keywordsBack
identifier doi10.1109/CICYBS.2014.7013367
journal titleomposite Materials & Renewable Energy Applications (ICCMREA), 2014 International Conference
filesize815072
citations0
contributor rawauthorAssas, O. , Bouzgou, H. , Fetah, S. , Salmi, M. , Boursas, A.
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace