•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scalable sentiment classification for Big Data analysis using Naïve Bayes Classifier

Author:
Bingwei Liu
,
Erik Blasch
,
Yu Chen
,
Dan Shen
,
Genshe Chen
Year
: 2013
DOI: 10.1109/BigData.2013.6691740
URI: https://libsearch.um.ac.ir:443/fum/handle/fum/912902
Collections :
  • Latin Articles
  • Download: (215.6Kb)
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Scalable sentiment classification for Big Data analysis using Naïve Bayes Classifier

Show full item record

contributor authorBingwei Liu
contributor authorErik Blasch
contributor authorYu Chen
contributor authorDan Shen
contributor authorGenshe Chen
date accessioned2020-03-12T15:28:15Z
date available2020-03-12T15:28:15Z
date issued2013
identifier otherjeOmRakGZJPuwVsF19ypXOpDnC6a3AKEIDJHvRTEyKcZ0cLDBT.pdf
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/912902?locale-attribute=en
formatgeneral
languageEnglish
titleScalable sentiment classification for Big Data analysis using Naïve Bayes Classifier
typeJournal Paper
contenttypeFulltext
contenttypeFulltext
identifier padid7448590
identifier doi10.1109/BigData.2013.6691740
journal title2013 IEEE International Conference on Big Data
coverageAcademic
filesize220612
citations5
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace