•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

A unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinite programming

Author:
Renato DC Monteiro
,
Yin Zhang
Year
: 1998
DOI: 10.1007/bf01580085
URI: https://libsearch.um.ac.ir:443/fum/handle/fum/896569
Collections :
  • Latin Articles
  • Download: (1.136Mb)
  • Show Full MetaData Hide Full MetaData
  • Statistics

    A unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinite programming

Show full item record

contributor authorRenato DC Monteiro
contributor authorYin Zhang
date accessioned2020-03-12T14:20:37Z
date available2020-03-12T14:20:37Z
date issued1998
identifier otherIw5TzI7Bo4KrFZQxkS5RhbZ8SSiAjbWxcmFqMc0KQocKAlzBzi.pdf
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/896569?locale-attribute=en
formatgeneral
languageEnglish
titleA unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinite programming
typeJournal Paper
contenttypeFulltext
contenttypeFulltext
identifier padid7239486
identifier doi10.1007/bf01580085
coverageAcademic
pages281-299
journal volume81
journal issue3
filesize1191623
citations1
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace