•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Feature Selection in Spectral Clustering

Author:
هادی صدوقی یزدی
,
سهیلا اشکذری طوسی
,
Hadi Sadoghi Yazdi
,
Soheila Ashkezari Toussi
Year
: 2011
Abstract: Spectral clustering is a powerful technique in clustering specially when the structure of

data is not linear and classical clustering methods lead to fail. In this paper, we propose a

spectral clustering algorithm with a feature selection schema based on extracted features of

Kernel PCA. In the proposed algorithm, selecting appropriate vectors is dependent upon

entropy of clusters on these vectors and weighting method is influenced by sum of the

existence gap between clusters and entropy of the vectors. Tuning the parameters has a great

effect on the results of spectral clustering techniques. In the ideal case, comparing our

method with NJW and Kernel K-Means indicate the successful of the proposed algorithm.
URI: https://libsearch.um.ac.ir:443/fum/handle/fum/3404085
Keyword(s): spectral clustering,kernel PCA,feature selection,entropy
Collections :
  • ProfDoc
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Feature Selection in Spectral Clustering

Show full item record

contributor authorهادی صدوقی یزدیen
contributor authorسهیلا اشکذری طوسیen
contributor authorHadi Sadoghi Yazdifa
contributor authorSoheila Ashkezari Toussifa
date accessioned2020-06-06T14:36:53Z
date available2020-06-06T14:36:53Z
date issued2011
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3404085
description abstractSpectral clustering is a powerful technique in clustering specially when the structure of

data is not linear and classical clustering methods lead to fail. In this paper, we propose a

spectral clustering algorithm with a feature selection schema based on extracted features of

Kernel PCA. In the proposed algorithm, selecting appropriate vectors is dependent upon

entropy of clusters on these vectors and weighting method is influenced by sum of the

existence gap between clusters and entropy of the vectors. Tuning the parameters has a great

effect on the results of spectral clustering techniques. In the ideal case, comparing our

method with NJW and Kernel K-Means indicate the successful of the proposed algorithm.
en
languageEnglish
titleFeature Selection in Spectral Clusteringen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsspectral clusteringen
subject keywordskernel PCAen
subject keywordsfeature selectionen
subject keywordsentropyen
journal titleInternational Journal of Signal Processing, Image Processing and Pattern Recognitionfa
pages179-194
journal volume4
journal issue3
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1024082.html
identifier articleid1024082
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace