•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing Human Action Recognition through Temporal Saliency

نویسنده:
ویدا عادلی مسبب
,
احسان فضل ارثی
,
احد هراتی
,
Vida Adeli Mosabbeb
,
Ehsan Fazl-Ersi
,
Ahad Harati
سال
: 2018
چکیده: Images and videos have become ubiquitous in every aspects of life due to the growing digital recording devices. It has encouraged the development of algorithms that can analyze video content and perform human action recognition. This paper investigates the challenging problem of action recognition by outlining a new approach to represent a video sequence. A novel framework is developed to produce informative features for action labeling in a weakly-supervised learning (WSL) approach both during training and testing. Using appearance and motion information, the goal is to identify frame regions that are likely to contain actions. A three-stream convolutional neural network is adopted and improved by proposing a method based on extracting actionness regions. This results in less computation as it is processing only some parts of an RGB frame and also interpret less non-activity related regions, which can mislead the recognition system. We exploit UCF sports dataset as our evaluation benchmark, which is a dataset of realistic sports videos. We will show that our proposed approach could outperform other existing state-of-the art methods.
یو آر آی: https://libsearch.um.ac.ir:443/fum/handle/fum/3398176
کلیدواژه(گان): Action recognition,Motion,Region proposal,Convolutional Neural Networks,Actionness
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    Enhancing Human Action Recognition through Temporal Saliency

Show full item record

contributor authorویدا عادلی مسببen
contributor authorاحسان فضل ارثیen
contributor authorاحد هراتیen
contributor authorVida Adeli Mosabbebfa
contributor authorEhsan Fazl-Ersifa
contributor authorAhad Haratifa
date accessioned2020-06-06T14:28:27Z
date available2020-06-06T14:28:27Z
date copyright5/14/2018
date issued2018
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3398176
description abstractImages and videos have become ubiquitous in every aspects of life due to the growing digital recording devices. It has encouraged the development of algorithms that can analyze video content and perform human action recognition. This paper investigates the challenging problem of action recognition by outlining a new approach to represent a video sequence. A novel framework is developed to produce informative features for action labeling in a weakly-supervised learning (WSL) approach both during training and testing. Using appearance and motion information, the goal is to identify frame regions that are likely to contain actions. A three-stream convolutional neural network is adopted and improved by proposing a method based on extracting actionness regions. This results in less computation as it is processing only some parts of an RGB frame and also interpret less non-activity related regions, which can mislead the recognition system. We exploit UCF sports dataset as our evaluation benchmark, which is a dataset of realistic sports videos. We will show that our proposed approach could outperform other existing state-of-the art methods.en
languageEnglish
titleEnhancing Human Action Recognition through Temporal Saliencyen
typeConference Paper
contenttypeExternal Fulltext
subject keywordsAction recognitionen
subject keywordsMotionen
subject keywordsRegion proposalen
subject keywordsConvolutional Neural Networksen
subject keywordsActionnessen
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1069138.html
identifier articleid1069138
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace