•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Context Based Recommender System through Collaborative Filtering and Word Embedding Techniques

Author:
مهسا خراسانی
,
سیدحمید سجادی
,
فائزه رمضانی
,
فائزه انسان
,
mahsa khorasani
,
Hamid Sajjadi
,
faeze ramezani
,
F Ensan
Year
: 2016
Abstract: This report presents a description of the context-based recommender system that

was developed by the FUM-IR team from the Ferdowsi University of Mashhad for

the Contextual Suggestion track of TREC 2016. This will also include the description

of the different runs were submitted to this track. In developing our system, we

followed two main approaches for finding suitable attractions for a given user: a

content-based approach and a category-based approach.
URI: https://libsearch.um.ac.ir:443/fum/handle/fum/3395795
Keyword(s): Recommender systems,context based,Word embedding
Collections :
  • ProfDoc
  • Show Full MetaData Hide Full MetaData
  • Statistics

    A Context Based Recommender System through Collaborative Filtering and Word Embedding Techniques

Show full item record

contributor authorمهسا خراسانیen
contributor authorسیدحمید سجادیen
contributor authorفائزه رمضانیen
contributor authorفائزه انسانen
contributor authormahsa khorasanifa
contributor authorHamid Sajjadifa
contributor authorfaeze ramezanifa
contributor authorF Ensanfa
date accessioned2020-06-06T14:25:04Z
date available2020-06-06T14:25:04Z
date copyright11/10/2016
date issued2016
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3395795
description abstractThis report presents a description of the context-based recommender system that

was developed by the FUM-IR team from the Ferdowsi University of Mashhad for

the Contextual Suggestion track of TREC 2016. This will also include the description

of the different runs were submitted to this track. In developing our system, we

followed two main approaches for finding suitable attractions for a given user: a

content-based approach and a category-based approach.
en
languageEnglish
titleA Context Based Recommender System through Collaborative Filtering and Word Embedding Techniquesen
typeConference Paper
contenttypeExternal Fulltext
subject keywordsRecommender systemsen
subject keywordscontext baseden
subject keywordsWord embeddingen
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1062204.html
conference titleTREC 2016en
conference locationواشنگتنfa
identifier articleid1062204
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace