•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Matlis duals of local cohomology modules and modules of generalized fractions

Author:
کاظم خشیارمنش
,
Kazem Khashyarmanesh
Year
: 2010
Abstract: Let (R,m) be a commutative Noetherian local ring with

non-zero identity, a a proper ideal of R and M a finitely

generated R-module with a M\\\\neq M. Let

D(-):=Hom_R(-,E) be the Matlis dual functor, where

E:=E(R/m) is the injective hull of the residue field R/m.

In this paper, by using a complex which involves modules of

generalized fractions, we show that, if x_1, ... ,x_n is a

regular sequence on

M contained in a, then H^n_(x_1, ... ,x_n)R

(D(H^n_a(M))) is a homomorphic image of D(M), where H^i_b(-) is

the i-th local cohomology functor with respect to an ideal

b of R. By applying this result, we study some conditions on

a certain module of generalized fractions under which

D(H^n_(x_1,... ,x_n)(D(H^n_a(M))))\\\\cong D(D(M)).
URI: https://libsearch.um.ac.ir:443/fum/handle/fum/3395329
Keyword(s): local cohomology module,Matlis dual functor,module of generalized fractions,filter regular sequence
Collections :
  • ProfDoc
  • Show Full MetaData Hide Full MetaData
  • Statistics

    On the Matlis duals of local cohomology modules and modules of generalized fractions

Show full item record

contributor authorکاظم خشیارمنشen
contributor authorKazem Khashyarmaneshfa
date accessioned2020-06-06T14:24:24Z
date available2020-06-06T14:24:24Z
date issued2010
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3395329?locale-attribute=en
description abstractLet (R,m) be a commutative Noetherian local ring with

non-zero identity, a a proper ideal of R and M a finitely

generated R-module with a M\\\\neq M. Let

D(-):=Hom_R(-,E) be the Matlis dual functor, where

E:=E(R/m) is the injective hull of the residue field R/m.

In this paper, by using a complex which involves modules of

generalized fractions, we show that, if x_1, ... ,x_n is a

regular sequence on

M contained in a, then H^n_(x_1, ... ,x_n)R

(D(H^n_a(M))) is a homomorphic image of D(M), where H^i_b(-) is

the i-th local cohomology functor with respect to an ideal

b of R. By applying this result, we study some conditions on

a certain module of generalized fractions under which

D(H^n_(x_1,... ,x_n)(D(H^n_a(M))))\\\\cong D(D(M)).
en
languageEnglish
titleOn the Matlis duals of local cohomology modules and modules of generalized fractionsen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordslocal cohomology moduleen
subject keywordsMatlis dual functoren
subject keywordsmodule of generalized fractionsen
subject keywordsfilter regular sequenceen
journal titleProceedings of the Indian Academy of Sciences - Mathematical Sciencesfa
pages35-43
journal volume120
journal issue1
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1015209.html
identifier articleid1015209
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace