•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

The block CMRH method for solving nonsymmetric linear systems with multiple right-hand sides

نویسنده:
سعیده امینی
,
فائزه توتونیان مشهد
,
مرتضی گچ پزان
,
saeide amini
,
Faezeh Toutounian Mashhad
,
Mortaza Gachpazan
سال
: 2018
چکیده: CMRH method (Changing minimal residual with Hessenberg process) is an iterative

method for solving nonsymmetric linear systems. This method is similar to QMR method

but based on the Hessenberg process instead of the Lanczos process. On dense matrices,

the CMRH method is less expensive and requires less storage than other Krylov methods.

This paper presents a block version of the CMRH algorithm for solving linear systems with

multiple right-hand sides. The new algorithm is based on the block Hessenberg process

and the iterates are characterized by a block version of the quasi-minimization property.

We analyze its main properties and show that under the condition of full rank of block

residual the block CMRH method cannot break down. Finally, some numerical examples

are presented to show the efficiency of the new method in comparison with the traditional

CMRH method and a comparison with the block GMRES method is also provided.

© 2018 Elsevier B.V.
یو آر آی: https://libsearch.um.ac.ir:443/fum/handle/fum/3363471
کلیدواژه(گان): CMRH method,Block Krylov subspace,Block Hessenberg process,Block GMRES,Multiple right-hand sides,

Matrix equation
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    The block CMRH method for solving nonsymmetric linear systems with multiple right-hand sides

Show full item record

contributor authorسعیده امینیen
contributor authorفائزه توتونیان مشهدen
contributor authorمرتضی گچ پزانen
contributor authorsaeide aminifa
contributor authorFaezeh Toutounian Mashhadfa
contributor authorMortaza Gachpazanfa
date accessioned2020-06-06T13:38:58Z
date available2020-06-06T13:38:58Z
date issued2018
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3363471?locale-attribute=fa
description abstractCMRH method (Changing minimal residual with Hessenberg process) is an iterative

method for solving nonsymmetric linear systems. This method is similar to QMR method

but based on the Hessenberg process instead of the Lanczos process. On dense matrices,

the CMRH method is less expensive and requires less storage than other Krylov methods.

This paper presents a block version of the CMRH algorithm for solving linear systems with

multiple right-hand sides. The new algorithm is based on the block Hessenberg process

and the iterates are characterized by a block version of the quasi-minimization property.

We analyze its main properties and show that under the condition of full rank of block

residual the block CMRH method cannot break down. Finally, some numerical examples

are presented to show the efficiency of the new method in comparison with the traditional

CMRH method and a comparison with the block GMRES method is also provided.

© 2018 Elsevier B.V.
en
languageEnglish
titleThe block CMRH method for solving nonsymmetric linear systems with multiple right-hand sidesen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsCMRH methoden
subject keywordsBlock Krylov subspaceen
subject keywordsBlock Hessenberg processen
subject keywordsBlock GMRESen
subject keywordsMultiple right-hand sidesen
subject keywords

Matrix equation
en
journal titleJournal of Computational and Applied Mathematicsfa
pages166-174
journal volume337
journal issue1
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1067275.html
identifier articleid1067275
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace