•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Descent Symmetrization of the Dai–Liao Conjugate Gradient Method

نویسنده:
Saman Babaie-Kafaki
,
رضا قنبری
,
Reza Ghanbari
سال
: 2016
چکیده: Symmetrizing the Dai–Liao (DL) search direction matrix by a rank-one modification, we propose a one-parameter class of nonlinear conjugate gradient (CG) methods which includes the memoryless Broyden–Fletcher–Goldfarb–Shanno (MLBFGS) quasi-Newton updating formula. Then, conducting an eigenvalue analysis, we suggest two choices for the parameter of the proposed class of CG methods which simultaneously guarantee the descent property and well-conditioning of the search direction matrix. A global convergence analysis is made for uniformly convex objective functions. Computational experiments are done on a set of unconstrained optimization test problems of the CUTEr collection. Results of numerical comparisons made by the Dolan–Moré performance profile show that proper choices for the mentioned parameter may lead to promising computational performances.
یو آر آی: https://libsearch.um.ac.ir:443/fum/handle/fum/3359750
کلیدواژه(گان): Unconstrained optimization,conjugate gradient method,descent condition,

eigenvalue
,
global convergence
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    Descent Symmetrization of the Dai–Liao Conjugate Gradient Method

Show full item record

contributor authorSaman Babaie-Kafakien
contributor authorرضا قنبریen
contributor authorReza Ghanbarifa
date accessioned2020-06-06T13:33:28Z
date available2020-06-06T13:33:28Z
date issued2016
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3359750?locale-attribute=fa
description abstractSymmetrizing the Dai–Liao (DL) search direction matrix by a rank-one modification, we propose a one-parameter class of nonlinear conjugate gradient (CG) methods which includes the memoryless Broyden–Fletcher–Goldfarb–Shanno (MLBFGS) quasi-Newton updating formula. Then, conducting an eigenvalue analysis, we suggest two choices for the parameter of the proposed class of CG methods which simultaneously guarantee the descent property and well-conditioning of the search direction matrix. A global convergence analysis is made for uniformly convex objective functions. Computational experiments are done on a set of unconstrained optimization test problems of the CUTEr collection. Results of numerical comparisons made by the Dolan–Moré performance profile show that proper choices for the mentioned parameter may lead to promising computational performances.en
languageEnglish
titleDescent Symmetrization of the Dai–Liao Conjugate Gradient Methoden
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsUnconstrained optimizationen
subject keywordsconjugate gradient methoden
subject keywordsdescent conditionen
subject keywords

eigenvalue
en
subject keywordsglobal convergenceen
journal titleAsia-Pacific Journal of Operational Researchfa
pages10-Jan
journal volume33
journal issue2
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1061167.html
identifier articleid1061167
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace