Show simple item record

contributor authorA. Kaabien
contributor authorفائزه توتونیان مشهدen
contributor authorاصغر کرایه چیانen
contributor authorFaezeh Toutounian Mashhadfa
contributor authorAsghar Kerayechianfa
date accessioned2020-06-06T13:16:33Z
date available2020-06-06T13:16:33Z
date issued2006
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3348604?locale-attribute=fa&show=full
description abstractThis paper presents preconditioned Galerkin and minimal residual algorithms for the solution of Sylvester equations AX−XB=C. Given two good preconditioner matrices M and N for matrices A and B, respectively, we solve the Sylvester equations MAXN−MXBN=MCN. The algorithms use the Arnoldi process to generate orthonormal bases of certain Krylov subspaces and simultaneously reduce the order of Sylvester equations. Numerical experiments show that the solution of Sylvester equations can be obtained with high accuracy by using the preconditioned versions of Galerkin and minimal residual algorithms and this versions are more robust and more efficient than those without preconditioning.en
languageEnglish
titlePreconditioned Galerkin and minimal residual methods for solving Sylvester equationsen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsSylvester matrix equations Preconditioning Galerkin method Minimal residual method Krylov subspaceen
journal titleApplied Mathematics and Computationen
journal titleApplied Mathematics and Computationfa
pages1208-1214
journal volume181
journal issue2
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-202465.html
identifier articleid202465


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record