Visual analytics clarify the scalability and effectiveness of massively parallel many-objective optimization: A groundwater monitoring design example
Year
: 2013DOI: 10.1016/j.advwatres.2013.01.011
Collections
:
-
Statistics
Visual analytics clarify the scalability and effectiveness of massively parallel many-objective optimization: A groundwater monitoring design example
Show full item record
| contributor author | Reed, Patrick M. | |
| contributor author | Kollat, Joshua B. | |
| date accessioned | 2020-03-16T15:55:39Z | |
| date available | 2020-03-16T15:55:39Z | |
| date issued | 2013 | |
| identifier other | v4X2TWRKD5rBq7PBqRqwQJgBvhin3pFzb5A6G829bDbtF4NSI2.pdf | |
| identifier uri | https://libsearch.um.ac.ir:443/fum/handle/fum/2327713 | |
| format | general | |
| language | English | |
| title | Visual analytics clarify the scalability and effectiveness of massively parallel many-objective optimization: A groundwater monitoring design example | |
| type | Journal Paper | |
| contenttype | Fulltext | |
| contenttype | Fulltext | |
| identifier padid | 15363869 | |
| identifier doi | 10.1016/j.advwatres.2013.01.011 | |
| coverage | Academic | |
| pages | 1-13 | |
| journal volume | 56 | |
| filesize | 1562997 | |
| citations | 0 |


