•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluation of ten machine learning methods for estimating terrestrial evapotranspiration from remote sensing

Author:
Carter, Corinne, and Shunlin Liang.
Publisher:
Elsevier BV
Year
: 2019
DOI: 10.1016/j.jag.2019.01.020
URI: https://libsearch.um.ac.ir:443/fum/handle/fum/2327598
Collections :
  • Latin Articles
  • Download: (415.2Kb)
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Evaluation of ten machine learning methods for estimating terrestrial evapotranspiration from remote sensing

Show full item record

contributor authorCarter, Corinne, and Shunlin Liang.
date accessioned2020-03-16T15:55:08Z
date available2020-03-16T15:55:08Z
date issued2019
identifier issn0303-2434
identifier otherOaUSiQoJZPAf9qzHEo8t8CGTaovk0YqovGfjvgqFS5pxVvmDJ9.pdf
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/2327598?locale-attribute=en
formatgeneral
languageEnglish
publisherElsevier BV
titleEvaluation of ten machine learning methods for estimating terrestrial evapotranspiration from remote sensing
typeJournal Paper
contenttypeFulltext
contenttypeFulltext
identifier padid15363275
identifier doi10.1016/j.jag.2019.01.020
coverageAcademic
pages86-92
filesize425047
citations1
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace