•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Application of artificial neural network for the prediction of stock market returns: The case of the Japanese stock market

Author:
Qiu, Mingyue, Yu Song, and Fumio Akagi.
Publisher:
Elsevier BV
Year
: 2016
DOI: 10.1016/j.chaos.2016.01.004
URI: https://libsearch.um.ac.ir:443/fum/handle/fum/2077418
Collections :
  • Latin Articles
  • Download: (533.0Kb)
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Application of artificial neural network for the prediction of stock market returns: The case of the Japanese stock market

Show full item record

contributor authorQiu, Mingyue, Yu Song, and Fumio Akagi.
date accessioned2020-03-15T22:20:31Z
date available2020-03-15T22:20:31Z
date issued2016
identifier issn0960-0779
identifier otherMh8VUTwV2i0Vi3uP2i9cxYQTDt6iEekL00iR_wTiBh_A9BVcUS.pdf
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/2077418
formatgeneral
languageEnglish
publisherElsevier BV
titleApplication of artificial neural network for the prediction of stock market returns: The case of the Japanese stock market
typeJournal Paper
contenttypeFulltext
contenttypeFulltext
identifier padid14267335
identifier doi10.1016/j.chaos.2016.01.004
coverageAcademic
pages1-7
filesize545609
citations1
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace