•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Leveraging tagging and rating for recommendation: RMF meets weighted diffusion on tripartite graphs

Author:
Jianguo Li
,
Yong Tang
,
Jiemin Chen
Year
: 2017
DOI: 10.1016/j.physa.2017.04.121
URI: https://libsearch.um.ac.ir:443/fum/handle/fum/1935153
Collections :
  • Latin Articles
  • Download: (4.708Mb)
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Leveraging tagging and rating for recommendation: RMF meets weighted diffusion on tripartite graphs

Show full item record

contributor authorJianguo Li
contributor authorYong Tang
contributor authorJiemin Chen
date accessioned2020-03-15T11:45:47Z
date available2020-03-15T11:45:47Z
date issued2017
identifier othergvTlCTcXXgF_xH2CQ4NC4ijVrjEmJrXHaynTuOqoEMbIHw7FqP.pdf
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/1935153?locale-attribute=en
formatgeneral
languageEnglish
titleLeveraging tagging and rating for recommendation: RMF meets weighted diffusion on tripartite graphs
typeJournal Paper
contenttypeFulltext
contenttypeFulltext
identifier padid13515015
identifier doi10.1016/j.physa.2017.04.121
journal titlePhysica A: Statistical Mechanics and its Applications
coverageAcademic
pages398-411
journal volume483
filesize4937088
citations1
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace