•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Feasibility Study on the Use of Dynamic Neural Networks (DNN’s) for Modeling a Variable Displacement Load Sensing Pump

Author:
Leslie Li
,
Richard Burton
,
Greg Schoenau
Year
: 2006
DOI: 10.1115/IMECE2006-15588
URI: https://libsearch.um.ac.ir:443/fum/handle/fum/1176104
Collections :
  • Latin Articles
  • Download: (414.2Kb)
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Feasibility Study on the Use of Dynamic Neural Networks (DNN’s) for Modeling a Variable Displacement Load Sensing Pump

Show full item record

contributor authorLeslie Li
contributor authorRichard Burton
contributor authorGreg Schoenau
date accessioned2020-03-13T02:20:38Z
date available2020-03-13T02:20:38Z
date issued2006
identifier other6VU8yLyYzyy6kcSECOoCy6uqVanBmTUpIj_NO6QkT22__Vr77P.pdf
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/1176104
formatgeneral
languageEnglish
titleFeasibility Study on the Use of Dynamic Neural Networks (DNN’s) for Modeling a Variable Displacement Load Sensing Pump
typeJournal Paper
contenttypeFulltext
contenttypeFulltext
identifier padid8525160
identifier doi10.1115/IMECE2006-15588
journal titleFluid Power Systems and Technology
coverageAcademic
filesize423976
citations1
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace