•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fault Diagnosis in Hybrid Electric Vehicle Regenerative Braking System

Author:
Sankavaram, Chaitanya
,
Pattipati, B.
,
Pattipati, Krishna R.
,
Yilu Zhang
,
Howell, Michael
Publisher:
IEEE
Year
: 2014
DOI: 10.1109/ACCESS.2014.2362756
URI: https://libsearch.um.ac.ir:443/fum/handle/fum/1146293
Keyword(s): energy conservation,fault diagnosis,feature extraction,hybrid electric vehicles,regenerative braking,signal processing,statistical analysis,aerospace systems,automobiles,buildings,data reduction,electric vehicles,energy efficiency,environmentally friendly technology,fault classification methodology,fault detection,fault diagnosis,fault isolation,feature extraction,hybrid electric vehicle regenerative braking system,memory-constrained electronic control units,signal processin
Collections :
  • Latin Articles
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Fault Diagnosis in Hybrid Electric Vehicle Regenerative Braking System

Show full item record

contributor authorSankavaram, Chaitanya
contributor authorPattipati, B.
contributor authorPattipati, Krishna R.
contributor authorYilu Zhang
contributor authorHowell, Michael
date accessioned2020-03-13T00:25:34Z
date available2020-03-13T00:25:34Z
date issued2014
identifier issn2169-3536
identifier other6920008.pdf
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/1146293?locale-attribute=en
formatgeneral
languageEnglish
publisherIEEE
titleFault Diagnosis in Hybrid Electric Vehicle Regenerative Braking System
typeJournal Paper
contenttypeMetadata Only
identifier padid8329091
subject keywordsenergy conservation
subject keywordsfault diagnosis
subject keywordsfeature extraction
subject keywordshybrid electric vehicles
subject keywordsregenerative braking
subject keywordssignal processing
subject keywordsstatistical analysis
subject keywordsaerospace systems
subject keywordsautomobiles
subject keywordsbuildings
subject keywordsdata reduction
subject keywordselectric vehicles
subject keywordsenergy efficiency
subject keywordsenvironmentally friendly technology
subject keywordsfault classification methodology
subject keywordsfault detection
subject keywordsfault diagnosis
subject keywordsfault isolation
subject keywordsfeature extraction
subject keywordshybrid electric vehicle regenerative braking system
subject keywordsmemory-constrained electronic control units
subject keywordssignal processin
identifier doi10.1109/ACCESS.2014.2362756
journal titleAccess, IEEE
journal volume2
filesize9152031
citations0
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace