•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Probabilistic Latent Document Network Embedding

Author:
Le, Tuan M.V.
,
Lauw, Hady W.
Publisher:
IEEE
Year
: 2014
DOI: 10.1109/ICCE-TW.2014.6904057
URI: https://libsearch.um.ac.ir:443/fum/handle/fum/1094201
Keyword(s): computational complexity,n image classification,n image sampling,n learning (artificial intelligence),n object detection,n pattern clustering,n pedestrians,n support vector machines,n HOG features,n SURF points,n SVM-classifier,n cascade-Adaboost structure,n deformable part models,n detection failure,n k-means clustering scheme,n nonrobust features,n object detection,n pedestrian detection,n shift with importance sampling technique,n time
Collections :
  • Latin Articles
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Probabilistic Latent Document Network Embedding

Show full item record

contributor authorLe, Tuan M.V.
contributor authorLauw, Hady W.
date accessioned2020-03-12T22:46:38Z
date available2020-03-12T22:46:38Z
date issued2014
identifier other7023344.pdf
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/1094201?locale-attribute=en
formatgeneral
languageEnglish
publisherIEEE
titleProbabilistic Latent Document Network Embedding
typeConference Paper
contenttypeMetadata Only
identifier padid8233896
subject keywordscomputational complexity
subject keywordsn image classification
subject keywordsn image sampling
subject keywordsn learning (artificial intelligence)
subject keywordsn object detection
subject keywordsn pattern clustering
subject keywordsn pedestrians
subject keywordsn support vector machines
subject keywordsn HOG features
subject keywordsn SURF points
subject keywordsn SVM-classifier
subject keywordsn cascade-Adaboost structure
subject keywordsn deformable part models
subject keywordsn detection failure
subject keywordsn k-means clustering scheme
subject keywordsn nonrobust features
subject keywordsn object detection
subject keywordsn pedestrian detection
subject keywordsn shift with importance sampling technique
subject keywordsn time
identifier doi10.1109/ICCE-TW.2014.6904057
journal titleata Mining (ICDM), 2014 IEEE International Conference on
filesize1684229
citations0
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace