contributor author | Knauer, U. | |
contributor author | Seiffert, U. | |
date accessioned | 2020-03-12T22:35:05Z | |
date available | 2020-03-12T22:35:05Z | |
date issued | 2014 | |
identifier other | 7015737.pdf | |
identifier uri | https://libsearch.um.ac.ir:443/fum/handle/fum/1087849?locale-attribute=en&show=full | |
format | general | |
language | English | |
publisher | IEEE | |
title | Fast image segmentation based on boosted random forests, integral images, and features on demand | |
type | Conference Paper | |
contenttype | Metadata Only | |
identifier padid | 8225756 | |
subject keywords | convex programming | |
subject keywords | n invariance | |
subject keywords | n linear systems | |
subject keywords | n sparse matrices | |
subject keywords | n convex optimization algorithm | |
subject keywords | n dynamical structure functions | |
subject keywords | n linear network systems | |
subject keywords | n linear time-invariant system | |
subject keywords | n sparsity assumption | |
subject keywords | n structure reconstruction | |
subject keywords | n system matrix | |
subject keywords | n Convex functions | |
subject keywords | n Heuristic algorithms | |
subject keywords | n Linear systems | |
subject keywords | n Protocols | |
subject keywords | n Reconstruction algorithms | |
subject keywords | n Steady-state | |
subject keywords | n Transfer functions | |
subject keywords | n Convex optimization | |
subject keywords | n Dynamical structure function | |
identifier doi | 10.1109/ChiCC.2014.6895922 | |
journal title | omputational Intelligence in Ensemble Learning (CIEL), 2014 IEEE Symposium on | |
filesize | 4459766 | |
citations | 0 | |