•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Combined SIFT and bi-coherence features to detect image forgery

Author:
Ju Zhang
,
Qiuqi Ruan
,
Yi Jin
Publisher:
IEEE
Year
: 2014
DOI: 10.1109/ChiCC.2014.6895730
URI: https://libsearch.um.ac.ir:443/fum/handle/fum/1087657
Keyword(s): compressed sensing,n learning (artificial intelligence),n object tracking,n statistical analysis,n benchmark videos,n best object location,n drifting,n generative methods,n improved compressive tracking algorithm,n local context information,n local context learning,n low-level features,n object location likelihood function,n occlusion,n statistical correlation,n Computed tomography,n Context,n Context modeling,n Feature extraction,n Target
Collections :
  • Latin Articles
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Combined SIFT and bi-coherence features to detect image forgery

Show full item record

contributor authorJu Zhang
contributor authorQiuqi Ruan
contributor authorYi Jin
date accessioned2020-03-12T22:34:44Z
date available2020-03-12T22:34:44Z
date issued2014
identifier other7015314.pdf
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/1087657?locale-attribute=en
formatgeneral
languageEnglish
publisherIEEE
titleCombined SIFT and bi-coherence features to detect image forgery
typeConference Paper
contenttypeMetadata Only
identifier padid8225531
subject keywordscompressed sensing
subject keywordsn learning (artificial intelligence)
subject keywordsn object tracking
subject keywordsn statistical analysis
subject keywordsn benchmark videos
subject keywordsn best object location
subject keywordsn drifting
subject keywordsn generative methods
subject keywordsn improved compressive tracking algorithm
subject keywordsn local context information
subject keywordsn local context learning
subject keywordsn low-level features
subject keywordsn object location likelihood function
subject keywordsn occlusion
subject keywordsn statistical correlation
subject keywordsn Computed tomography
subject keywordsn Context
subject keywordsn Context modeling
subject keywordsn Feature extraction
subject keywordsn Target
identifier doi10.1109/ChiCC.2014.6895730
journal titleignal Processing (ICSP), 2014 12th International Conference on
filesize788382
citations2
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace