•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
Search 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Search
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Search
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

نمایش تعداد 1-10 از 36

    • Relevance
    • Title Asc
    • Title Desc
    • سال صعودی
    • سال نزولی
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • خروجی
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    An operator inequality and its consequences 

    نوع: Journal Paper
    نویسنده : محمد صال مصلحیان; Jadranka Micic; محسن کیان; Mohammad Sal Moslehian; Mohsen Kian
    سال: 2013
    خلاصه:

    (\\\\\\\\Phi(B))+f(\\\\\\\\Phi(C))\\\\\\\\leq \\\\\\\\Phi(f(A))+\\\\\\\\Phi(f(D)).

    \\\\\\\\end{eqnarray*}

    and apply it to obtain several inequalities such as the

    Jensen--Mercer operator inequality and the Petrovi\\\\\\\\\\\\\\'c operator

    inequality....

    Operator maps of Jensen-type 

    نوع: Journal Paper
    نویسنده : محمد صال مصلحیان; حامد نجفی; F. Hansen; Mohammad Sal Moslehian; Hamed Najafi
    سال: 2018
    خلاصه:

    ‎Let BJ(H) denote the set of self-adjoint operators acting on a Hilbert space H with spectra contained in an open interval J. A map Φ:BJ(H)→B(H)sa is said to be of Jensen-type if (C∗AC+D∗BD)≤C∗Φ(A)C+D∗Φ(B)D for all ...

    An interview with Josip E. Pečarić 

    نوع: Journal Paper
    نویسنده : محمد صال مصلحیان; Mohammad Sal Moslehian
    سال: 2008
    خلاصه:

    While Professor J.E. Peˇcari´c and the interviewer are meeting each

    other in three conferences in Iran, Hungary and Croatia, they had some conversations

    concerning life, ideas and contributions of Professor ...

    Operator inequalities of Jensen type 

    نوع: Journal Paper
    نویسنده : محمد صال مصلحیان; Jadranka Micic; Mohsen Kian; Mohammad Sal Moslehian
    سال: 2013
    خلاصه:

    We present some generalized Jensen type operator inequalities

    involving sequences of self-adjoint operators. Among other things,

    we prove that if f:[0, infty) to mathbb{R} is a continuous

    convex function with f(0) leq 0...

    Advances in Operator Cauchy-Schwarz inequalities and their reverses 

    نوع: Journal Paper
    نویسنده : J.M. Aldaz; S. Barza; M. Fujii; محمد صال مصلحیان; Mohammad Sal Moslehian
    سال: 2015
    خلاصه:

    on operator inequalities, we then review some significant recent developments of the C-S inequality and its reverses for Hilbert space operators and elements of Hilbert $C^*$-modules. In particular, we pay special attention to an operator Wielandt inequality....

    Some operator inequalities involving operator means and positive linear maps 

    نوع: Journal Paper
    نویسنده : Maryam Khosravi; محمد صال مصلحیان; Alemeh Sheikhhosseini; Mohammad Sal Moslehian
    سال: 2017
    خلاصه:

    Let $A$ and $B$ be two positive operators with $0 < m \\leqslant

    A, B \\leqslant M$ for positive real numbers $ M, m, \\, \\sigma$

    be an operator mean and $\\sigma^{*}$ be the adjoint

    mean of $ ...

    An operator Karamata inequality 

    نوع: Journal Paper
    نویسنده : محمد صال مصلحیان; Marek Niezgoda; Rajna Rajic; Mohammad Sal Moslehian
    سال: 2014
    خلاصه:

    We present an operator version of the Karamata inequality. More

    precisely, we prove that if $A$ is a selfadjoint element of a unital

    C^* -algebra mathscr{A} , rho is a state on mathscr{A} , the

    functions ...

    A generalization of the Buzano inequality 

    نوع: Journal Paper
    نویسنده : محمد صال مصلحیان; Maryam Khosravi; Roman Drnovsek; Mohammad Sal Moslehian
    سال: 2012
    خلاصه:

    Using a $2\\\\\\\\\\\\\\\\times 2$ matrix trick, we present an inequality

    involving commutators of certain Hilbert space operators as an

    operator version of Buzano\\\\\\\\\\\\\\'s inequality, which is in turn ...

    Riemann sums for self-adjoint operators 

    نوع: Journal Paper
    نویسنده : J. Rooin; A. Alikhani; محمد صال مصلحیان; Mohammad Sal Moslehian
    سال: 2014
    خلاصه:

    This paper focuses on Riemann sums for the functional calculus of bounded self-adjoint operaors. We first obtain some monotonicity properties of operator convex functions. Using these results we then refine an

    operator ...

    Gruss inequality for some types of positive linear maps 

    نوع: Journal Paper
    نویسنده : Jagjit Singh Matharu; محمد صال مصلحیان; Mohammad Sal Moslehian
    سال: 2015
    خلاصه:

    Assuming a unitarily invariant norm $...
    |\\cdot...
    |$ is given on a two-sided ideal of bounded linear operators acting on a separable Hilbert space, it induces some unitarily invariant norms $...
    |\\cdot...
    |$ on matrix algebras $\\mathcal{M}_n$ for all finite values of $n$ via $...
    |A...
    |=...
    |A\\oplus 0...
    |$. We show that if $\\mathscr{A}$ is a $C^*$-algebra of finite dimension

    $k$ and $\\Phi: \\mathscr{A} \\to \\mathcal{M}_n$ is a unital completely

    positive map, then

    \\begin{equation*}

    ...
    |\\Phi(AB)-\\Phi(A)\\Phi(B)...
    | \\leq \\frac{1}{4}

    ...
    |I_{n}...
    |\\,...
    |I_{kn}...
    {M}_{m}$. Further we get an analogous

    inequality for certain $n$-positive maps in the setting of full

    matrix algebras by using some matrix tricks. We also give a Gr\\"uss

    operator inequality in the setting of $C^*$-algebras of arbitrary...

    • 1
    • 2
    • 3
    • 4

    نویسنده

    ... View More

    ناشر

    سال

    کلیدواژه

    ... View More

    نوع

    زبان

    نوع محتوا

    عنوان ناشر

    ... View More
    • درباره ما
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    DSpace software copyright © 2019-2022  DuraSpace