•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
Search 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Search
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Search
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

نمایش تعداد 1-10 از 20

    • Relevance
    • Title Asc
    • Title Desc
    • سال صعودی
    • سال نزولی
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • خروجی
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Fixed point theorems for set-valued mappings in b-metric spaces 

    نوع: Journal Paper
    نویسنده : سیدعلیرضا کامل میر مصطفائی; Seyyed Alireza Kamel Mirmostafaee
    سال: 2017
    خلاصه:

    We will establish set-valued version of Suzuki's fixed point theorem when the underling space is a complete $b$-metric. Our method enable us to prove set-valued versions of Hardy-Rogers and \\^{C}iri\\'{c} fixed point theorems for b-metric spaces....

    Iterative algorithm in systems of linear integral equations and error analysis 

    نوع: Conference Paper
    نویسنده : مرتضی گچ پزان; امید باغانی; Mortaza Gachpazan; omid baghani
    سال: 2011
    خلاصه:

    We will apply the successive approximation method to give a stopping

    rule for mathcal{K} such that mathcal{K} be integral operator

    on complete metric space (X, |. |_{ infty}) , that

    X:=C([a,b], ...

    On the piecewise-spectral homotopy analysis method and its convergence: solution of hyperchaotic L¨u system 

    نوع: Journal Paper
    نویسنده : S. S.MOTSA; حسن صابری نیک; سهراب عفتی; جعفر صابری نجفی; Hassan Saberi Nik; Sohrab Effati; Jafar Saberi- Nadjafi
    سال: 2014
    خلاصه:

    In this paper, a novel modification of the spectral-homotopy analysis method (SHAM) technique for solving highly nonlinear initial value problems that model systems with chaotic and hyper-chaotic behaviour is presented. ...

    Rationalized Haar wavelet bases to approximate solution of nonlinear Fredholm integral equations with error analysis 

    نوع: Journal Paper
    نویسنده : مجید عرفانیان اورعی; مرتضی گچ پزان; حسین بیگلو; majid erfanian; Mortaza Gachpazan; hossein beiglo
    سال: 2015
    خلاصه:

    In this article we approximate the solutions of the nonlinear Fredholm integral equations of the second kind, by the method based on using the properties of RH wavelets and matrix operator. Also, the Banach fixed point theorem guarantees...

    Solving mixed Fredholm–Volterra integral equations by using the operational matrix of RH wavelets 

    نوع: Journal Paper
    نویسنده : مجید عرفانیان اورعی; مرتضی گچ پزان; majid erfanian; Mortaza Gachpazan
    سال: 2015
    خلاصه:

    . The main tools for error analysis is Banach fixed point theorem. Furthermore, the order of convergence is analyzed. The algorithm to compute the solutions and some numerical examples are included to support the theory....

    A new method for solving of Darboux problem with Haar Wavelet 

    نوع: Journal Paper
    نویسنده : Majid Erfanian; مرتضی گچ پزان; Sajad Kosari; Mortaza Gachpazan
    سال: 2016
    خلاصه:

    the Banach fixed point theorem, we get a n upper bound for the error of our method. Since our examples in this article are selected from different references, so the numerical results obtained here can be compared with other numerical methods....

    A new sequential approach for solving the integro-differential equation via Haar wavelet bases 

    نوع: Journal Paper
    نویسنده : مجید عرفانیان اورعی; مرتضی گچ پزان; حسین بیگلو; majid erfanian; Mortaza Gachpazan; hossein beiglo
    سال: 2017
    خلاصه:

    In this work, we present a method for numerical approximation of fixed point operator, particularly

    for the mixed Volterra–Fredholm integro-differential equations. The main tool for error analysis is the Banach fixed point theorem...

    Numerical solution of nonlinear mixed Volterra-Fredholm integral equations in complex plane via PQWs 

    نوع: Journal Paper
    نویسنده : حسین بیگلو; مرتضی گچ پزان; hossein beiglo; Mortaza Gachpazan
    سال: 2020
    خلاصه:

    -wavelets are used as basis functions to approximate the solution. Also, using the Banach fixed point theorem, some results concerning the error analysis are obtained. Finally, some numerical examples show the implementation and accuracy of this method....

    Apply fixed point theorem for solving of nonlinear Volterra integral equation with Harr wavelet 

    نوع: Conference Paper
    نویسنده : M. Erfanian; مرتضی گچ پزان; M. Erfanian; Mortaza Gachpazan
    سال: 2016
    خلاصه:

    tools for error analysis is Banach fixed point theorem. Furthermore, the order of convergence is analyzed. Some numerical examples are included to support the theory....

    A NEW METHOD FOR SOLVING OF 2D FREDHOLM INTEGRAL EQUATION WITH RH WAVELET 

    نوع: Conference Paper
    نویسنده : M. Erfanian; مرتضی گچ پزان; M. Erfanian; Mortaza Gachpazan
    سال: 2016
    خلاصه:

    In this paper we have introduced a computational method for a class of two-dimensional nonlinear Fredholm integral equations, The method is based on 2D Haar wavelet. Also, Banach fixed point theorem guarantees that under certain assumptions...

    • 1
    • 2

    نویسنده

    ... View More

    ناشر

    سال

    کلیدواژه

    ... View More

    نوع

    زبان

    نوع محتوا

    عنوان ناشر

    ... View More
    • درباره ما
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    DSpace software copyright © 2019-2022  DuraSpace