Style-based abstractions for human motion classification
Author:
Publisher:
Year
: 2014DOI: 10.1109/CICA.2014.7013246
Keyword(s): feedback,function approximation,linear systems,neurocontrollers,constrained linear system,function approximation,input-output manifold,neural network fitting,noise measurement,online control law,set invariance,Computational modeling,Manifolds,Neural networks,Noise,Output feedback,Runtime
Collections
:
-
Statistics
Style-based abstractions for human motion classification
Show full item record
| contributor author | LaViers, A. , Egerstedt, M. | |
| date accessioned | 2020-03-12T19:58:33Z | |
| date available | 2020-03-12T19:58:33Z | |
| date issued | 2014 | |
| identifier other | 6843713.pdf | |
| identifier uri | https://libsearch.um.ac.ir:443/fum/handle/fum/997219?locale-attribute=en | |
| format | general | |
| language | English | |
| publisher | IEEE | |
| title | Style-based abstractions for human motion classification | |
| type | Conference Paper | |
| contenttype | Metadata Only | |
| identifier padid | 8117128 | |
| subject keywords | feedback | |
| subject keywords | function approximation | |
| subject keywords | linear systems | |
| subject keywords | neurocontrollers | |
| subject keywords | constrained linear system | |
| subject keywords | function approximation | |
| subject keywords | input-output manifold | |
| subject keywords | neural network fitting | |
| subject keywords | noise measurement | |
| subject keywords | online control law | |
| subject keywords | set invariance | |
| subject keywords | Computational modeling | |
| subject keywords | Manifolds | |
| subject keywords | Neural networks | |
| subject keywords | Noise | |
| subject keywords | Output feedback | |
| subject keywords | Runtime | |
| identifier doi | 10.1109/CICA.2014.7013246 | |
| journal title | yber-Physical Systems (ICCPS), 2014 ACM/IEEE International Conference on | |
| filesize | 985219 | |
| citations | 0 |


