Learning mid-level features from object hierarchy for image classification
date accessioned | 2020-03-12T19:52:14Z | |
date available | 2020-03-12T19:52:14Z | |
date issued | 2014 | |
identifier other | 6836095.pdf | |
identifier uri | https://libsearch.um.ac.ir:443/fum/handle/fum/993216?locale-attribute=fa&show=full | |
format | general | |
language | English | |
publisher | IEEE | |
title | Learning mid-level features from object hierarchy for image classification | |
type | Conference Paper | |
contenttype | Metadata Only | |
identifier padid | 8112415 | |
subject keywords | Accuracy | |
subject keywords | Computers | |
subject keywords | Face | |
subject keywords | Face detection | |
subject keywords | Feature extraction | |
subject keywords | Image color analysis | |
subject keywords | Skin | |
subject keywords | AdaBoost | |
subject keywords | Gaussian pyramid | |
subject keywords | face detection | |
subject keywords | skin color feature | |
identifier doi | 10.1109/MFI.2014.6997663 | |
journal title | pplications of Computer Vision (WACV), 2014 IEEE Winter Conference on | |
filesize | 1408116 | |
citations | 0 | |
contributor rawauthor | Albaradei, S. , Yang Wang , Liangliang Cao , Li-Jia Li |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |