Show simple item record

contributor authorWei Wang
date accessioned2020-03-12T19:37:32Z
date available2020-03-12T19:37:32Z
date issued2014
identifier other6783327.pdf
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/984028?show=full
formatgeneral
languageEnglish
publisherIEEE
titleAutomated Shmoo data analysis: A machine learning approach
typeConference Paper
contenttypeMetadata Only
identifier padid8099379
subject keywordsair pollution control
subject keywordshydrogen storage
subject keywordsnatural gas technology
subject keywordsrenewable energy sources
subject keywordsEuropean energy system
subject keywordsenergy surplus
subject keywordsgreenhouse gas emission reduction
subject keywordslong-term energy storage
subject keywordsnatural gas infrastructure
subject keywordspower-to-gas technology
subject keywordsrenewable energy sources
subject keywordsElectricity
subject keywordsEurope
subject keywordsHydrogen
subject keywordsLoad modeling
subject keywordsNatural gas
subject keywordsPower generation
subject keywordsProduction
subject keywordsEnergy storage
subject keywordsHydrogen storage
subject keywordsPower generation dispatch
subject keywordsPower-to-Gas
identifier doi10.1109/PESGM.2014.6939004
journal titleuality Electronic Design (ISQED), 2014 15th International Symposium on
filesize733851
citations0


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record