•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

A New Unsupervised Binning Approach for Metagenomic Sequences Based on N-grams and Automatic Feature Weighting

Author:
Ruiqi Liao
,
Ruichang Zhang
,
Jihong Guan
,
Shuigeng Zhou
Publisher:
IEEE
Year
: 2014
DOI: 10.1109/TCBB.2013.137
URI: https://libsearch.um.ac.ir:443/fum/handle/fum/961461
Keyword(s): biology computing,feature extraction,genomics,microorganisms,sensitivity,sequences,unsupervised learning,AbundanceBin,F-measure,MCluster,MetaCluster 3.0,MetaCluster 5.0,N-grams,automatic feature weighting,basic K-means clustering algorithm,high-throughput technologies,metagenomic analysis,metagenomic data binning,metagenomic sequences,real data set,sampled microbial community,sensitivity,sequence feature extraction,short metagenomic reads,simulated data sets,taxonomical
Collections :
  • Latin Articles
  • Show Full MetaData Hide Full MetaData
  • Statistics

    A New Unsupervised Binning Approach for Metagenomic Sequences Based on N-grams and Automatic Feature Weighting

Show full item record

contributor authorRuiqi Liao
contributor authorRuichang Zhang
contributor authorJihong Guan
contributor authorShuigeng Zhou
date accessioned2020-03-12T18:31:40Z
date available2020-03-12T18:31:40Z
date issued2014
identifier issn1545-5963
identifier other6654133.pdf
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/961461?locale-attribute=en
formatgeneral
languageEnglish
publisherIEEE
titleA New Unsupervised Binning Approach for Metagenomic Sequences Based on N-grams and Automatic Feature Weighting
typeJournal Paper
contenttypeMetadata Only
identifier padid7994263
subject keywordsbiology computing
subject keywordsfeature extraction
subject keywordsgenomics
subject keywordsmicroorganisms
subject keywordssensitivity
subject keywordssequences
subject keywordsunsupervised learning
subject keywordsAbundanceBin
subject keywordsF-measure
subject keywordsMCluster
subject keywordsMetaCluster 3.0
subject keywordsMetaCluster 5.0
subject keywordsN-grams
subject keywordsautomatic feature weighting
subject keywordsbasic K-means clustering algorithm
subject keywordshigh-throughput technologies
subject keywordsmetagenomic analysis
subject keywordsmetagenomic data binning
subject keywordsmetagenomic sequences
subject keywordsreal data set
subject keywordssampled microbial community
subject keywordssensitivity
subject keywordssequence feature extraction
subject keywordsshort metagenomic reads
subject keywordssimulated data sets
subject keywordstaxonomical
identifier doi10.1109/TCBB.2013.137
journal titleComputational Biology and Bioinformatics, IEEE/ACM Transactions on
journal volume11
journal issue1
filesize2394154
citations0
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace