A New Unsupervised Binning Approach for Metagenomic Sequences Based on N-grams and Automatic Feature Weighting
ناشر:
سال
: 2014شناسه الکترونیک: 10.1109/TCBB.2013.137
کلیدواژه(گان): biology computing,feature extraction,genomics,microorganisms,sensitivity,sequences,unsupervised learning,AbundanceBin,F-measure,MCluster,MetaCluster 3.0,MetaCluster 5.0,N-grams,automatic feature weighting,basic K-means clustering algorithm,high-throughput technologies,metagenomic analysis,metagenomic data binning,metagenomic sequences,real data set,sampled microbial community,sensitivity,sequence feature extraction,short metagenomic reads,simulated data sets,taxonomical
کالکشن
:
-
آمار بازدید
A New Unsupervised Binning Approach for Metagenomic Sequences Based on N-grams and Automatic Feature Weighting
Show full item record
contributor author | Ruiqi Liao | |
contributor author | Ruichang Zhang | |
contributor author | Jihong Guan | |
contributor author | Shuigeng Zhou | |
date accessioned | 2020-03-12T18:31:40Z | |
date available | 2020-03-12T18:31:40Z | |
date issued | 2014 | |
identifier issn | 1545-5963 | |
identifier other | 6654133.pdf | |
identifier uri | https://libsearch.um.ac.ir:443/fum/handle/fum/961461 | |
format | general | |
language | English | |
publisher | IEEE | |
title | A New Unsupervised Binning Approach for Metagenomic Sequences Based on N-grams and Automatic Feature Weighting | |
type | Journal Paper | |
contenttype | Metadata Only | |
identifier padid | 7994263 | |
subject keywords | biology computing | |
subject keywords | feature extraction | |
subject keywords | genomics | |
subject keywords | microorganisms | |
subject keywords | sensitivity | |
subject keywords | sequences | |
subject keywords | unsupervised learning | |
subject keywords | AbundanceBin | |
subject keywords | F-measure | |
subject keywords | MCluster | |
subject keywords | MetaCluster 3.0 | |
subject keywords | MetaCluster 5.0 | |
subject keywords | N-grams | |
subject keywords | automatic feature weighting | |
subject keywords | basic K-means clustering algorithm | |
subject keywords | high-throughput technologies | |
subject keywords | metagenomic analysis | |
subject keywords | metagenomic data binning | |
subject keywords | metagenomic sequences | |
subject keywords | real data set | |
subject keywords | sampled microbial community | |
subject keywords | sensitivity | |
subject keywords | sequence feature extraction | |
subject keywords | short metagenomic reads | |
subject keywords | simulated data sets | |
subject keywords | taxonomical | |
identifier doi | 10.1109/TCBB.2013.137 | |
journal title | Computational Biology and Bioinformatics, IEEE/ACM Transactions on | |
journal volume | 11 | |
journal issue | 1 | |
filesize | 2394154 | |
citations | 0 |