•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Artificial Neural Networks Applied for Simultaneous Analysis of Mixtures of Nitrophenols by Conductometric Acid–Base Titration

نویسنده:
غلامحسین رونقی
,
رویا محمدزاده کاخکی
,
طاهره حیدری
,
Glamhossein Ronagi
,
roya mohammadzadekakhki
,
Taherh Heidari
سال
: 2011
چکیده: In this study, the simultaneous conductometric titration method for determination of mixtures of 4-nitrophenol, 2,4-dinitrophenol, and 2,4,6- trinitrophenol based on principal component artificial neural network (ANN) calibration model was proposed. The three-layered feed-forward ANN trained by back-propagation learning was used to model the complex nonlinear relationship between the concentration of 4-nitrophenol, 2,4-dinitrophenol, and 2,4,6-trinitrophenol in their ternary mixtures and the conductance of the solutions at different volumes of titrant. The principal components of the conductance matrix were used as the input of the network. The network architecture and parameters were optimized to give low prediction error. The optimized networks predicted the concentrations of nitrophenols in synthetic mixtures. The results showed that the used ANN can proceed the titration data with low relative prediction errors (5.53%, 4.03%, and 4.71% for 4-nitrophenol, 2,4-dinitrophenol, and 2,4,6-trinitrophenol, respectively) and satisfactory recoveries.
یو آر آی: https://libsearch.um.ac.ir:443/fum/handle/fum/3404168
کلیدواژه(گان): nitrophenols - analysis of mixture - conductometric Acid-base
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    Artificial Neural Networks Applied for Simultaneous Analysis of Mixtures of Nitrophenols by Conductometric Acid–Base Titration

Show full item record

contributor authorغلامحسین رونقیen
contributor authorرویا محمدزاده کاخکیen
contributor authorطاهره حیدریen
contributor authorGlamhossein Ronagifa
contributor authorroya mohammadzadekakhkifa
contributor authorTaherh Heidarifa
date accessioned2020-06-06T14:37:00Z
date available2020-06-06T14:37:00Z
date issued2011
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3404168
description abstractIn this study, the simultaneous conductometric titration method for determination of mixtures of 4-nitrophenol, 2,4-dinitrophenol, and 2,4,6- trinitrophenol based on principal component artificial neural network (ANN) calibration model was proposed. The three-layered feed-forward ANN trained by back-propagation learning was used to model the complex nonlinear relationship between the concentration of 4-nitrophenol, 2,4-dinitrophenol, and 2,4,6-trinitrophenol in their ternary mixtures and the conductance of the solutions at different volumes of titrant. The principal components of the conductance matrix were used as the input of the network. The network architecture and parameters were optimized to give low prediction error. The optimized networks predicted the concentrations of nitrophenols in synthetic mixtures. The results showed that the used ANN can proceed the titration data with low relative prediction errors (5.53%, 4.03%, and 4.71% for 4-nitrophenol, 2,4-dinitrophenol, and 2,4,6-trinitrophenol, respectively) and satisfactory recoveries.en
languageEnglish
titleArtificial Neural Networks Applied for Simultaneous Analysis of Mixtures of Nitrophenols by Conductometric Acid–Base Titrationen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsnitrophenols - analysis of mixture - conductometric Acid-baseen
journal titleIndustrial & Engineering Chemistry Researchen
journal titleIndustrial and Engineering Chemistry Researchfa
pages11375-11381
journal volume10.1
journal issue50
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1024232.html
identifier articleid1024232
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace