Show simple item record

contributor authorهادی صدوقی یزدیen
contributor authorسهیلا اشکذری طوسیen
contributor authorHadi Sadoghi Yazdifa
contributor authorSoheila Ashkezari Toussifa
date accessioned2020-06-06T14:36:53Z
date available2020-06-06T14:36:53Z
date issued2011
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3404085?show=full
description abstractSpectral clustering is a powerful technique in clustering specially when the structure of

data is not linear and classical clustering methods lead to fail. In this paper, we propose a

spectral clustering algorithm with a feature selection schema based on extracted features of

Kernel PCA. In the proposed algorithm, selecting appropriate vectors is dependent upon

entropy of clusters on these vectors and weighting method is influenced by sum of the

existence gap between clusters and entropy of the vectors. Tuning the parameters has a great

effect on the results of spectral clustering techniques. In the ideal case, comparing our

method with NJW and Kernel K-Means indicate the successful of the proposed algorithm.
en
languageEnglish
titleFeature Selection in Spectral Clusteringen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsspectral clusteringen
subject keywordskernel PCAen
subject keywordsfeature selectionen
subject keywordsentropyen
journal titleInternational Journal of Signal Processing, Image Processing and Pattern Recognitionfa
pages179-194
journal volume4
journal issue3
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1024082.html
identifier articleid1024082


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record