Show simple item record

contributor authorفائزه انسانen
contributor authorEbrahim Bagherifa
contributor authorF Ensanfa
contributor authorF Al-Obeidatfa
date accessioned2020-06-06T14:29:53Z
date available2020-06-06T14:29:53Z
date copyright10/22/2018
date issued2018
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3399239?show=full
description abstractNeural embeddings have been effectively integrated into information retrieval tasks including ad hoc retrieval. One of the benefits of neural embeddings is they allow for the calculation of the similarity between queries and documents through vector similarity calculation methods. While such methods have been effective for document matching, they have an inherent bias towards documents that are sized relatively similarly. Therefore, the difference between the query and document lengths, referred to as the query-document size imbalance problem, becomes an issue when incorporating neural embeddings and their associated similarity calculation models into the ad hoc document retrieval process. In this paper, we propose that document representation methods need to be used to address the size imbalance problem and empirically show their impact on the performance of neural embedding-based ad hoc retrieval. In addition, we explore several types of document representation methods and investigate their impact on the retrieval process. We conduct our experiments on three widely used standard corpora, namely Clueweb09B, Clueweb12B and Robust04 and their associated topics. Summarily, we find that document representation methods are able to effectively address the query-document size imbalance problem and significantly improve the performance of neural ad hoc retrieval. In addition, we find that a document representation method based on a simple term-frequency shows significantly better performance compared to more sophisticated representation methods such as neural composition and aspect-based methods.en
languageEnglish
titleImpact of Document Representation on Neural Ad hoc Retrievalen
typeConference Paper
contenttypeExternal Fulltext
subject keywordsNeural embeddings in information retrievalen
subject keywordsad hoc retrievalen
subject keywordssemantic searchen
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1072217.html
identifier articleid1072217


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record