•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improvement of An Abstractive Summarization Evaluation Tool using Lexical-Semantic Relations and Weighted Syntax Tags in Farsi Language

نویسنده:
احمد استیری
,
محسن کاهانی
,
هادی قائمی
,
محسن عباسی
,
Ahmad Estiry
,
Mohsen Kahani
,
hadi ghaemi
,
mohsen abasi
سال
: 2014
چکیده: In recent years, high increase in the amount of published web elements and the need to store, classify, restore, and process them have intensified the importance of natural language processing and its related tools such as automatic summarizers and machine translators. In this paper, a novel approach for evaluating automatic abstractive summarization system is proposed which can also be used in the other Natural Language Processing and Information Retrieval Applications. By comparing auto-abstracts (abstracts created by machine) with human abstracts (ideal abstracts created by human), the metrics introduced in the proposed tool can automatically measure the quality of auto-abstracts. Evidently, we can’t semantically compare texts of abstractive summaries by comparison of just their words’ appearance. So it is necessary to use a lexical database such as WordNet. We use FerdowsNet with a proper idea for Farsi language and it notably improves the evaluation results. This tool has been assessed by linguistic experts. This tool contains metric for determining the quality of summaries automatically by comparing them with summaries generated by humans (Ideal summaries). Evidently, we can’t semantically compare texts of abstractive summaries by comparison of just their words’ appearance and it is necessary to use a lexical database. We use this database with a proper idea together with Farsi parser in order to identify groups forming sentences and the results of evaluation improve significantly.
یو آر آی: https://libsearch.um.ac.ir:443/fum/handle/fum/3390191
کلیدواژه(گان): Natural Language Processing (NLP),Semantics,Evaluation,Automatic Abstractive Summarizer,Sentences groups,Parse tree,parser
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    Improvement of An Abstractive Summarization Evaluation Tool using Lexical-Semantic Relations and Weighted Syntax Tags in Farsi Language

Show full item record

contributor authorاحمد استیریen
contributor authorمحسن کاهانیen
contributor authorهادی قائمیen
contributor authorمحسن عباسیen
contributor authorAhmad Estiryfa
contributor authorMohsen Kahanifa
contributor authorhadi ghaemifa
contributor authormohsen abasifa
date accessioned2020-06-06T14:17:14Z
date available2020-06-06T14:17:14Z
date copyright2/4/2014
date issued2014
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3390191
description abstractIn recent years, high increase in the amount of published web elements and the need to store, classify, restore, and process them have intensified the importance of natural language processing and its related tools such as automatic summarizers and machine translators. In this paper, a novel approach for evaluating automatic abstractive summarization system is proposed which can also be used in the other Natural Language Processing and Information Retrieval Applications. By comparing auto-abstracts (abstracts created by machine) with human abstracts (ideal abstracts created by human), the metrics introduced in the proposed tool can automatically measure the quality of auto-abstracts. Evidently, we can’t semantically compare texts of abstractive summaries by comparison of just their words’ appearance. So it is necessary to use a lexical database such as WordNet. We use FerdowsNet with a proper idea for Farsi language and it notably improves the evaluation results. This tool has been assessed by linguistic experts. This tool contains metric for determining the quality of summaries automatically by comparing them with summaries generated by humans (Ideal summaries). Evidently, we can’t semantically compare texts of abstractive summaries by comparison of just their words’ appearance and it is necessary to use a lexical database. We use this database with a proper idea together with Farsi parser in order to identify groups forming sentences and the results of evaluation improve significantly.en
languageEnglish
titleImprovement of An Abstractive Summarization Evaluation Tool using Lexical-Semantic Relations and Weighted Syntax Tags in Farsi Languageen
typeConference Paper
contenttypeExternal Fulltext
subject keywordsNatural Language Processing (NLP)en
subject keywordsSemanticsen
subject keywordsEvaluationen
subject keywordsAutomatic Abstractive Summarizeren
subject keywordsSentences groupsen
subject keywordsParse treeen
subject keywordsparseren
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1046205.html
conference titleIranian Conference on Intelligent Systems (ICIS), 2014en
conference locationبمfa
identifier articleid1046205
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace