Show simple item record

contributor authorعلیرضا اکبرزاده توتونچیen
contributor authorمحمد صادقی اول شهرen
contributor authorAlireza Akbarzadeh Tootoonchifa
contributor authormohammad sadeghifa
date accessioned2020-06-06T13:59:56Z
date available2020-06-06T13:59:56Z
date copyright2/26/2011
date issued2011
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3378167?show=full
description abstractDimensional changes because of shrinkage is one of the most important problems in production of plastic parts using injection molding. In this study, effect of injection molding parameters on the shrinkage in polypropylene (PP) and polystyrene (PS) has been investigated. The relationship between input and output of the process is investigated using regression analysis and ANOVA method. To do this, existing data is used. The selected input parameters are melting temperature, injection pressure, packing pressure and packing time. Effect of these parameters on the shrinkage of above mentioned materials is studied using mathematical modeling. For modeling the process, different types of regression equations including linear polynomial, Quadratic polynomial and logarithmic function, are used to interpolate experiment data. Next, using step backward elimination and 95% confidence level, insignificant parameters are eliminated from model. To check validity of the PP model, correlation coefficient of each model is calculated and the best model is selected. The same procedure is repeated for the PS model. Finally, optimum levels of the input parameters that minimize shrinkage, for both materials are determined. Simulated Annealing (SA) algorithm is applied on the developed mathematical models. The optimization results show that the proposed models and algorithm are effective in solving the mentioned problems.en
languageEnglish
titleOptimization of shrinkage in Plastic injection molding process using statistical methods and SA algorithmen
typeConference Paper
contenttypeExternal Fulltext
subject keywordsPlastic injection moldingen
subject keywordsshrinkageen
subject keywordsRegressionen
subject keywordsOptimizationen
subject keywordsSA algorithmen
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1019130.html
conference title2nd International Conference on Mechanical, Industrial, and Manufacturing Technologies-MIMT 2011en
conference locationسنگاپورfa
identifier articleid1019130


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record