•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of Hydropower Energy Price Using Go’mes-Maravall Seasonal Model

نویسنده:
آرش جمال منش
,
مهدی خداپرست مشهدی
,
احمد سیفی
,
محمدعلی فلاحی
,
Arash Jamalmanesh
,
Mahdi Khodaparast Mashhadi
,
Ahmad Seifi
,
Mohammad Ali Falahi
سال
: 2018
چکیده: The present research is aimed at investigating the possibility of predicting average monthly prices and presenting a model for predicting electricity price in Iranian market considering unique characteristics of electricity as a commodity. For this purpose, time series data on average monthly electricity price during 2006-2015 was used. Firstly, unit root test was used to investigate stationarity of time series of electricity price. Then, using Go’mes-Maravall model, an ARIMA model was estimated for predicting electricity price in Iranian market using energy purchase data from a hydropower plant. The model was run utilizing SEAT (Signal Extraction in ARIMA Time series) and TARMO (Time Series Regression with ARIMA Noise, Missing Observations, and Outliers) programs. For this purpose, energy purchase data from three river hydropower plants (Khuzestan Province, Iran) was used
یو آر آی: https://libsearch.um.ac.ir:443/fum/handle/fum/3363797
کلیدواژه(گان): Electricity Price,Hydropower,Seasonal Go’mes-Maravall Model
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    Prediction of Hydropower Energy Price Using Go’mes-Maravall Seasonal Model

Show full item record

contributor authorآرش جمال منشen
contributor authorمهدی خداپرست مشهدیen
contributor authorاحمد سیفیen
contributor authorمحمدعلی فلاحیen
contributor authorArash Jamalmaneshfa
contributor authorMahdi Khodaparast Mashhadifa
contributor authorAhmad Seififa
contributor authorMohammad Ali Falahifa
date accessioned2020-06-06T13:39:25Z
date available2020-06-06T13:39:25Z
date issued2018
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3363797
description abstractThe present research is aimed at investigating the possibility of predicting average monthly prices and presenting a model for predicting electricity price in Iranian market considering unique characteristics of electricity as a commodity. For this purpose, time series data on average monthly electricity price during 2006-2015 was used. Firstly, unit root test was used to investigate stationarity of time series of electricity price. Then, using Go’mes-Maravall model, an ARIMA model was estimated for predicting electricity price in Iranian market using energy purchase data from a hydropower plant. The model was run utilizing SEAT (Signal Extraction in ARIMA Time series) and TARMO (Time Series Regression with ARIMA Noise, Missing Observations, and Outliers) programs. For this purpose, energy purchase data from three river hydropower plants (Khuzestan Province, Iran) was useden
languageEnglish
titlePrediction of Hydropower Energy Price Using Go’mes-Maravall Seasonal Modelen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsElectricity Priceen
subject keywordsHydropoweren
subject keywordsSeasonal Go’mes-Maravall Modelen
journal titleInternational Journal of Energy Economics and Policyfa
pages81-88
journal volume8
journal issue2
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1067742.html
identifier articleid1067742
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace