Show simple item record

contributor authorرجبعلی کامیابی گلen
contributor authorRajab Ali Kamyabi Golfa
date accessioned2020-06-06T13:21:54Z
date available2020-06-06T13:21:54Z
date issued2006
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3351876?show=full
description abstractAbstract. Let K be a locally compact hypergroup with left Haar

measure and let P1

(K) = {f ∈ L1

(K) : f ≥ 0, kfk1 = 1 }. Then

P1

(K) is a topological semigroup under the convolution product of

L1

(K) induced in P1

(K). We say that K is P-amenable if there

exists a left invariant mean on C(P1

(K)), the space of all bounded

continuous functions on P1

(K). In this note, we consider the P-

amenability of hypergroups. The P-amenability of hypergroup joins

K = H ∨ J where H is a compact hypergroup and J is a discrete

hypergroup with H∩J = {e} is characterized. It is also shown that

Z-hypergroups are P-amenable if Z(K) ∩ G(K) is compact
en
languageEnglish
titleP-Amenable Locally Compact Hypergroupsen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsHypergroupen
subject keywordsLeft invariant meanen
subject keywordsAmenableen
subject keywordsP-amenableen
subject keywordsHypergroup joinsen
subject keywordsZhypergroupen
subject keywordsStrongly normalen
subject keywordsSupernormalen
subject keywordsTopological semigroupen
journal titleBulletin of the Iranian Mathematical Societyfa
pages43-51
journal volume32
journal issue2
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-203387.html
identifier articleid203387


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record