•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integral reinforcement learning and experience replay for adaptive optimal control of partially-unknown constrained-input continuous-time systems

Author:
حمید رضا مدرّس
,
F. L. Lewis
,
محمدباقر نقیبی سیستانی
,
Hamidreza Modares
,
Mohammad Bagher Naghibi Sistani
Year
: 2014
Abstract: In this paper, an integral reinforcement learning (IRL) algorithm on an actor–critic structure is developed

to learn online the solution to the Hamilton–Jacobi–Bellman equation for partially-unknown constrainedinput

systems. The technique of experience replay is used to update the critic weights to solve an

IRL Bellman equation. This means, unlike existing reinforcement learning algorithms, recorded past

experiences are used concurrently with current data for adaptation of the critic weights. It is shown that

using this technique, instead of the traditional persistence of excitation condition which is often difficult

or impossible to verify online, an easy-to-check condition on the richness of the recorded data is sufficient

to guarantee convergence to a near-optimal control law. Stability of the proposed feedback control law is

shown and the effectiveness of the proposed method is illustrated with simulation examples
URI: https://libsearch.um.ac.ir:443/fum/handle/fum/3349005
Keyword(s): Integral reinforcement learning

Experience replay

Optimal control

Neural networks

Input constraints
Collections :
  • ProfDoc
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Integral reinforcement learning and experience replay for adaptive optimal control of partially-unknown constrained-input continuous-time systems

Show full item record

contributor authorحمید رضا مدرّسen
contributor authorF. L. Lewisen
contributor authorمحمدباقر نقیبی سیستانیen
contributor authorHamidreza Modaresfa
contributor authorMohammad Bagher Naghibi Sistanifa
date accessioned2020-06-06T13:17:09Z
date available2020-06-06T13:17:09Z
date issued2014
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3349005
description abstractIn this paper, an integral reinforcement learning (IRL) algorithm on an actor–critic structure is developed

to learn online the solution to the Hamilton–Jacobi–Bellman equation for partially-unknown constrainedinput

systems. The technique of experience replay is used to update the critic weights to solve an

IRL Bellman equation. This means, unlike existing reinforcement learning algorithms, recorded past

experiences are used concurrently with current data for adaptation of the critic weights. It is shown that

using this technique, instead of the traditional persistence of excitation condition which is often difficult

or impossible to verify online, an easy-to-check condition on the richness of the recorded data is sufficient

to guarantee convergence to a near-optimal control law. Stability of the proposed feedback control law is

shown and the effectiveness of the proposed method is illustrated with simulation examples
en
languageEnglish
titleIntegral reinforcement learning and experience replay for adaptive optimal control of partially-unknown constrained-input continuous-time systemsen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsIntegral reinforcement learning

Experience replay

Optimal control

Neural networks

Input constraints
en
journal titleAutomaticafa
pages193-202
journal volume50
journal issue1
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1040139.html
identifier articleid1040139
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace