•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling and Optimization of Surface Roughness of AISI2312 Hot Worked Steel in EDM based on Mathematical Modeling and Genetic Algorithm

نویسنده:
مسعود آزادی مقدم
,
فرهاد کلاهان
,
masoud azadi moghaddam
,
Farhad Kolahan
سال
: 2014
چکیده: In this study the effect of input EDM parameters on the surface quality of 2312 hot worked steel parts has been modeled and optimized. The proposed approach is based on statistical analysis on the experimental data. The input parameters are peak current (I), pulse on time (Ton), pulse off time (Toff), duty factor (h) and voltage (V). The experimental data are gathered using Taguchi L36 design matrix. In order to establish the relations between input and output parameters, regression function has been fitted on the Signal to Noise ratios of the experimental data. The results of analysis of variance (ANOVA) revealed that pulse on time and peak currents significantly influence the surface quality. In the next stage, the developed model is embedded into a genetic algorithm to determine the optimal set of process parameters for any desired surface roughness (within feasible ranges). Using optimization results, a set of verification tests is performed to verify the accuracy of the optimization procedure in determining the optimal levels of machining parameters. Computational results indicate that the proposed modeling technique and genetic algorithm are quite efficient in modeling and optimization of EDM process parameters.
یو آر آی: https://libsearch.um.ac.ir:443/fum/handle/fum/3348030
کلیدواژه(گان): Taguchi Technique

Signal to Noise Analysis (S/N)

Electrical Discharge Machining (EDM)

Optimization

Genetic Algorithm (GA)

Analysis of Variance (ANOVA)
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    Modeling and Optimization of Surface Roughness of AISI2312 Hot Worked Steel in EDM based on Mathematical Modeling and Genetic Algorithm

Show full item record

contributor authorمسعود آزادی مقدمen
contributor authorفرهاد کلاهانen
contributor authormasoud azadi moghaddamfa
contributor authorFarhad Kolahanfa
date accessioned2020-06-06T13:15:41Z
date available2020-06-06T13:15:41Z
date issued2014
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3348030
description abstractIn this study the effect of input EDM parameters on the surface quality of 2312 hot worked steel parts has been modeled and optimized. The proposed approach is based on statistical analysis on the experimental data. The input parameters are peak current (I), pulse on time (Ton), pulse off time (Toff), duty factor (h) and voltage (V). The experimental data are gathered using Taguchi L36 design matrix. In order to establish the relations between input and output parameters, regression function has been fitted on the Signal to Noise ratios of the experimental data. The results of analysis of variance (ANOVA) revealed that pulse on time and peak currents significantly influence the surface quality. In the next stage, the developed model is embedded into a genetic algorithm to determine the optimal set of process parameters for any desired surface roughness (within feasible ranges). Using optimization results, a set of verification tests is performed to verify the accuracy of the optimization procedure in determining the optimal levels of machining parameters. Computational results indicate that the proposed modeling technique and genetic algorithm are quite efficient in modeling and optimization of EDM process parameters.en
languageEnglish
titleModeling and Optimization of Surface Roughness of AISI2312 Hot Worked Steel in EDM based on Mathematical Modeling and Genetic Algorithmen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsTaguchi Technique

Signal to Noise Analysis (S/N)

Electrical Discharge Machining (EDM)

Optimization

Genetic Algorithm (GA)

Analysis of Variance (ANOVA)
en
journal titleInternational Journal of Engineeringen
journal titleInternational Journal of Engineeringfa
pages417-424
journal volume27
journal issue3
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1038084.html
identifier articleid1038084
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace