•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Operator inequalities of Jensen type

Author:
محمد صال مصلحیان
,
Jadranka Micic
,
Mohsen Kian
,
Mohammad Sal Moslehian
Year
: 2013
Abstract: We present some generalized Jensen type operator inequalities

involving sequences of self-adjoint operators. Among other things,

we prove that if f:[0, infty) to mathbb{R} is a continuous

convex function with f(0) leq 0 , then

begin{equation*}

sum_{i=1}^{n} f(C_i) leq f left( sum_{i=1}^{n}C_i right)- delta_fsum_{i=1}^{n} widetilde{C}_i leq f left( sum_{i=1}^{n}C_i right)

end{equation*}

for all operators C_i such that 0 leq C_i leq M leq sum_{i=1}^{n} C_i (i=1, ldots,n) for some scalar

M geq0 , where widetilde{C_i} = frac{1}{2} - left|frac{C_i}{M}- frac{1}{2} right| and delta_f = f(0)+f(M) - 2 f left(

frac{M}{2} right).
URI: https://libsearch.um.ac.ir:443/fum/handle/fum/3347875
Keyword(s): convex function,positive linear map,Jensen--Mercer

operator inequality
,
Petrovi c operator inequality
Collections :
  • ProfDoc
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Operator inequalities of Jensen type

Show full item record

contributor authorمحمد صال مصلحیانen
contributor authorJadranka Micicen
contributor authorMohsen Kianen
contributor authorMohammad Sal Moslehianfa
date accessioned2020-06-06T13:15:27Z
date available2020-06-06T13:15:27Z
date issued2013
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/3347875
description abstractWe present some generalized Jensen type operator inequalities

involving sequences of self-adjoint operators. Among other things,

we prove that if f:[0, infty) to mathbb{R} is a continuous

convex function with f(0) leq 0 , then

begin{equation*}

sum_{i=1}^{n} f(C_i) leq f left( sum_{i=1}^{n}C_i right)- delta_fsum_{i=1}^{n} widetilde{C}_i leq f left( sum_{i=1}^{n}C_i right)

end{equation*}

for all operators C_i such that 0 leq C_i leq M leq sum_{i=1}^{n} C_i (i=1, ldots,n) for some scalar

M geq0 , where widetilde{C_i} = frac{1}{2} - left|frac{C_i}{M}- frac{1}{2} right| and delta_f = f(0)+f(M) - 2 f left(

frac{M}{2} right).
en
languageEnglish
titleOperator inequalities of Jensen typeen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsconvex functionen
subject keywordspositive linear mapen
subject keywordsJensen--Mercer

operator inequality
en
subject keywordsPetrovi c operator inequalityen
journal titleTopological Algebra and its Applicationsfa
pages21-Sep
journal volume1
journal issue1
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1037800.html
identifier articleid1037800
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace