•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

How many packets are most effective for early stage traffic identification: An experimental study

Author:
Peng Lizhi
,
Yang Bo
,
Chen Yuehui
,
Wu Tong
Publisher:
IEEE
Year
: 2014
DOI: 10.1109/CC.2014.6969782
URI: https://libsearch.um.ac.ir:443/fum/handle/fum/1149648
Keyword(s): Internet,learning (artificial intelligence),telecommunication traffic,crossover identification experiment,early stage traffic identification,feature extraction,machine learning model,packet size,traffic data sets,Feature extraction,Machine learning,Packet switching,Telecommunication network management,Telecommunication traffic,early stage traffic classification,feature extraction,machine learning
Collections :
  • Latin Articles
  • Show Full MetaData Hide Full MetaData
  • Statistics

    How many packets are most effective for early stage traffic identification: An experimental study

Show full item record

contributor authorPeng Lizhi
contributor authorYang Bo
contributor authorChen Yuehui
contributor authorWu Tong
date accessioned2020-03-13T00:31:07Z
date available2020-03-13T00:31:07Z
date issued2014
identifier issn1673-5447
identifier other6969782.pdf
identifier urihttps://libsearch.um.ac.ir:443/fum/handle/fum/1149648
formatgeneral
languageEnglish
publisherIEEE
titleHow many packets are most effective for early stage traffic identification: An experimental study
typeJournal Paper
contenttypeMetadata Only
identifier padid8332949
subject keywordsInternet
subject keywordslearning (artificial intelligence)
subject keywordstelecommunication traffic
subject keywordscrossover identification experiment
subject keywordsearly stage traffic identification
subject keywordsfeature extraction
subject keywordsmachine learning model
subject keywordspacket size
subject keywordstraffic data sets
subject keywordsFeature extraction
subject keywordsMachine learning
subject keywordsPacket switching
subject keywordsTelecommunication network management
subject keywordsTelecommunication traffic
subject keywordsearly stage traffic classification
subject keywordsfeature extraction
subject keywordsmachine learning
identifier doi10.1109/CC.2014.6969782
journal titleCommunications, China
journal volume11
journal issue9
filesize1798209
citations0
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace