Providing IaaS resources automatically through prediction and monitoring approaches
ناشر:
سال
: 2014شناسه الکترونیک: 10.1109/ICCSE.2014.6926515
کلیدواژه(گان): learning (artificial intelligence),sampling methods,support vector machines,RUS method,SMOTE method,SVM,boundary ratio,class imbalance learning,instance learning,linear support vector machine,random under-sampling method,resampling methods,synthetic minority over-sampling technique,Classification algorithms,Computers,Educational institutions,Glass,Vehicles,borderline ratio based sampling,imbalanced data,support vector machine
کالکشن
:
-
آمار بازدید
Providing IaaS resources automatically through prediction and monitoring approaches
Show full item record
date accessioned | 2020-03-12T20:54:42Z | |
date available | 2020-03-12T20:54:42Z | |
date issued | 2014 | |
identifier other | 6912590.pdf | |
identifier uri | https://libsearch.um.ac.ir:443/fum/handle/fum/1030084 | |
format | general | |
language | English | |
publisher | IEEE | |
title | Providing IaaS resources automatically through prediction and monitoring approaches | |
type | Conference Paper | |
contenttype | Metadata Only | |
identifier padid | 8155445 | |
subject keywords | learning (artificial intelligence) | |
subject keywords | sampling methods | |
subject keywords | support vector machines | |
subject keywords | RUS method | |
subject keywords | SMOTE method | |
subject keywords | SVM | |
subject keywords | boundary ratio | |
subject keywords | class imbalance learning | |
subject keywords | instance learning | |
subject keywords | linear support vector machine | |
subject keywords | random under-sampling method | |
subject keywords | resampling methods | |
subject keywords | synthetic minority over-sampling technique | |
subject keywords | Classification algorithms | |
subject keywords | Computers | |
subject keywords | Educational institutions | |
subject keywords | Glass | |
subject keywords | Vehicles | |
subject keywords | borderline ratio based sampling | |
subject keywords | imbalanced data | |
subject keywords | support vector machine | |
identifier doi | 10.1109/ICCSE.2014.6926515 | |
journal title | omputers and Communication (ISCC), 2014 IEEE Symposium on | |
filesize | 482998 | |
citations | 0 | |
contributor rawauthor | da Silva Dias, Ariel , Nakamura, Luis H.V. , Estrella, Julio C. , Santana, Regina H.C. , Santana, Marcos J. |