•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
Search 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Search
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Search
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

نمایش تعداد 1-7 از 7

    • Relevance
    • Title Asc
    • Title Desc
    • سال صعودی
    • سال نزولی
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • خروجی
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Application of artificial neural network models and principal component analysis method in predicting stock prices on Tehran Stock Exchange 

    نوع: Journal Paper
    نویسنده : Javad Zahedi; Mohammad Mahdi Rounaghi
    سال: 2015
    Request PDF

    Application of artificial neural network models and principal component analysis method in predicting stock prices on Tehran Stock Exchange 

    نوع: Journal Paper
    نویسنده : Javad Zahedi; Mohammad Mahdi Rounaghi
    سال: 2015
    Request PDF

    Investigation of market efficiency and Financial Stability between S&P 500 and London Stock Exchange: Monthly and yearly Forecasting of Time Series Stock Returns using ARMA model 

    نوع: Journal Paper
    نویسنده : Mohammad Mahdi Rounaghi; Farzaneh Nassir Zadeh
    سال: 2016
    Request PDF

    Investigation of fractal market hypothesis and forecasting time series stock returns for Tehran Stock Exchange and London Stock Exchange 

    نوع: Journal Paper
    نویسنده : مهدی مرادی; مهدی جباری نوقابی; Mohammad Mahdi Rounaghi; Mahdi Moradi; Mehdi Jabbari Nooghabi; Mohammad Mahdi Rounaghi
    سال: 2019
    خلاصه:

    An alternative investment theory to the widely utilized efficient market hypothesis, fractal market hypothesis analyses the daily randomness of the market and the turbulence witnessed during crashes and crises. The framework ...

    Investigation of Market efficiency between S&P 500 and London Stock Exchange : monthly and yearly Forecasting of Time Series Stock Returns Using ARMA model 

    نوع: Journal Paper
    نویسنده : Mohammad Mahdi Rounaghi; فرزانه نصیرزاده; Farzaneh Nassir Zadeh
    سال: 2016
    خلاصه:

    We investigated the presence of, and changes in, long memory features in the returns and volatility dynamics of S&P 500 and London Stock Exchange Using ARMA model. Recently, multifractal analysis has been evolved as an ...

    Stock price forecasting for companies listed on Tehran stock exchange using multivariate adaptive regression splines model and semi-parametric splines technique 

    نوع: Journal Paper
    نویسنده : Mohammad Mahdi Rounaghi; Mohammad Reza Abbaszadeh; Mohammad Arashi
    سال: 2015
    Request PDF

    Stock price forecasting for companies listed on Tehran stock exchange using multivariate adaptive regression splines model and semi-parametric splines technique 

    نوع: Journal Paper
    نویسنده : Mohammad Mahdi Rounaghi; محمدرضا عباس زاده; Mohammad Arashi; Mohammad Reza Abbaszadeh
    سال: 2015
    خلاصه:

    One of the most important topics of interesttoinvestorsisstockpricechanges.Investors

    whosegoalsarelongtermaresensitivetostockpriceanditschangesandreacttothem.

    Inthisregard,weusedmultivariateadaptiveregressi ...

    نویسنده

    ... View More

    سال

    کلیدواژه

    ... View More

    نوع

    زبان

    نوع محتوا

    عنوان ناشر

    • درباره ما
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    DSpace software copyright © 2019-2022  DuraSpace