•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
Search 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Search
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Search
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

نمایش تعداد 1-5 از 5

    • Relevance
    • Title Asc
    • Title Desc
    • سال صعودی
    • سال نزولی
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • خروجی
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Going Concern Prediction of Iranian Companies by Using Fuzzy C-Means 

    نوع: Journal Paper
    نویسنده : مهدی مرادی; مهدی صالحی; هادی صدوقی یزدی; Mohammad Ebrahim Gorgani; Mahdi Moradi; Mahdi Salehi; Hadi Sadoghi Yazdi
    سال: 2012
    خلاصه:

    Decision-making problems in the area of financial status evaluation have been considered very important. Making in- correct decisions in firms is very likely to cause financial crises and distress. Predicting going concern ...

    Management Assessment of Going Concern Based on Data Mining Using Adaptive Network Based Fuzzy Inference Systems (ANFIS) 

    نوع: Conference Paper
    نویسنده : Fezeh Zahedi Fard; مهدی صالحی; Mahdi Salehi
    سال: 2012
    خلاصه:

    Going concern is a fundamental concept for the preparation of financial statements by management. This paper has employed a data mining approach for going concern prediction (GCP) and has applied Adaptive Network Based Fuzzy Inference Systems (ANFIS...

    Financial Distress Prediction of Iranian Companies by Using Data Mining Techniques 

    نوع: Journal Paper
    نویسنده : مهدی مرادی; مهدی صالحی; Mohammad Ebrahim Ghorgani; هادی صدوقی یزدی; Mahdi Moradi; Mahdi Salehi; Hadi Sadoghi Yazdi
    سال: 2013
    خلاصه:

    Decision-making problems in the area of financial status evaluation are considered very important. Making incorrect decisions in firms is very likely to cause financial crises and distress. Predicting financial distress ...

    Data Mining Approach Using Practical Swarm Optimization (PSO) to Predicting Going Concern: Evidence from Iranian Companies 

    نوع: Journal Paper
    نویسنده : مهدی صالحی; Fezeh Zahedi Fard; Mahdi Salehi
    سال: 2013
    خلاصه:

    Purpose - Going concern is one of fundamental concepts in accounting and auditing and sometimes the assessment of a company’s going concern status that is a tough process. Various going concern prediction models’ based on statistical and data mining...

    Data Mining Approach to Prediction of Going Concern Using Classification and Regression Tree (CART) 

    نوع: Journal Paper
    نویسنده : مهدی صالحی; Fezeh Zahedi Fard; Mahdi Salehi
    سال: 2013
    خلاصه:

    This paper has employed a data mining approach for Going Concern Prediction (GCP) for one year ahead and has applied Classification and Regression Tree (CART) and Naïve Bayes Bayesian Network (NBBN) based on feature selection method in Iranian firms...

    نویسنده

    سال

    کلیدواژه

    ... View More

    نوع

    زبان

    نوع محتوا

    عنوان ناشر

    • درباره ما
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    DSpace software copyright © 2019-2022  DuraSpace