•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

SMV methodology enhancements for high speed I/O links of SoCs

Author:
Viveros-Wacher, A. , Alejos, R. , Alvarez, L. , Diaz-Castro, I. , Marcial, B. , Motola-Acuna, G. , Vega-Ochoa, E.-A.
Publisher:
IEEE
Year
: 2014
DOI: 10.1109/AUPEC.2014.6966627
URI: http://libsearch.um.ac.ir:80/fum/handle/fum/989698
Keyword(s): Artificial neural networks,Forecasting,Genetic algorithms,Load forecasting,Load modeling,Predictive models,Training,Feed-forward neural network,genetic algorithm,power System Planning,radial basis function neural network,short-term load forecasting
Collections :
  • Latin Articles
  • Show Full MetaData Hide Full MetaData
  • Statistics

    SMV methodology enhancements for high speed I/O links of SoCs

Show full item record

date accessioned2020-03-12T19:46:37Z
date available2020-03-12T19:46:37Z
date issued2014
identifier other6818767.pdf
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/989698
formatgeneral
languageEnglish
publisherIEEE
titleSMV methodology enhancements for high speed I/O links of SoCs
typeConference Paper
contenttypeMetadata Only
identifier padid8105960
subject keywordsArtificial neural networks
subject keywordsForecasting
subject keywordsGenetic algorithms
subject keywordsLoad forecasting
subject keywordsLoad modeling
subject keywordsPredictive models
subject keywordsTraining
subject keywordsFeed-forward neural network
subject keywordsgenetic algorithm
subject keywordspower System Planning
subject keywordsradial basis function neural network
subject keywordsshort-term load forecasting
identifier doi10.1109/AUPEC.2014.6966627
journal titleLSI Test Symposium (VTS), 2014 IEEE 32nd
filesize539848
citations0
contributor rawauthorViveros-Wacher, A. , Alejos, R. , Alvarez, L. , Diaz-Castro, I. , Marcial, B. , Motola-Acuna, G. , Vega-Ochoa, E.-A.
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace