•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Virtual and Real World Adaptation for Pedestrian Detection

Author:
Vazquez, David
,
Lopez, Antonio M.
,
Marin, J.
,
Ponsa, Daniel
,
Geronimo, David
Publisher:
IEEE
Year
: 2014
DOI: 10.1109/TPAMI.2013.163
URI: http://libsearch.um.ac.ir:80/fum/handle/fum/958888
Keyword(s): image classification,learning (artificial intelligence),object detection,pedestrians,virtual reality,V-AYLA,adapted pedestrian classifier,domain adaptation framework,human-provided pedestrian annotations,object detector,pedestrian appearance model,pedestrian detection,pedestrian samples,real-world images,realistic virtual worlds,source domain,target domain,virtual-world based training,Accuracy,Cameras,Detectors,Image resolution,Interpolation,Testing,Training,Pedestrian d
Collections :
  • Latin Articles
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Virtual and Real World Adaptation for Pedestrian Detection

Show full item record

contributor authorVazquez, David
contributor authorLopez, Antonio M.
contributor authorMarin, J.
contributor authorPonsa, Daniel
contributor authorGeronimo, David
date accessioned2020-03-12T18:27:00Z
date available2020-03-12T18:27:00Z
date issued2014
identifier issn0162-8828
identifier other6587038.pdf
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/958888?locale-attribute=en
formatgeneral
languageEnglish
publisherIEEE
titleVirtual and Real World Adaptation for Pedestrian Detection
typeJournal Paper
contenttypeMetadata Only
identifier padid7991386
subject keywordsimage classification
subject keywordslearning (artificial intelligence)
subject keywordsobject detection
subject keywordspedestrians
subject keywordsvirtual reality
subject keywordsV-AYLA
subject keywordsadapted pedestrian classifier
subject keywordsdomain adaptation framework
subject keywordshuman-provided pedestrian annotations
subject keywordsobject detector
subject keywordspedestrian appearance model
subject keywordspedestrian detection
subject keywordspedestrian samples
subject keywordsreal-world images
subject keywordsrealistic virtual worlds
subject keywordssource domain
subject keywordstarget domain
subject keywordsvirtual-world based training
subject keywordsAccuracy
subject keywordsCameras
subject keywordsDetectors
subject keywordsImage resolution
subject keywordsInterpolation
subject keywordsTesting
subject keywordsTraining
subject keywordsPedestrian d
identifier doi10.1109/TPAMI.2013.163
journal titlePattern Analysis and Machine Intelligence, IEEE Transactions on
journal volume36
journal issue4
filesize2253065
citations0
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace