•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

A generalization of Chebyshev’s inequality for Hilbert space valued random elements

Author:
Budny, Katarzyna
Publisher:
Elsevier Science
Year
: 2014
DOI: 10.1016/j.spl.2014.01.021
URI: http://libsearch.um.ac.ir:80/fum/handle/fum/932808
Keyword(s): Chebyshev’s inequality,Random vector,Hilbert
Collections :
  • Latin Articles
  • Show Full MetaData Hide Full MetaData
  • Statistics

    A generalization of Chebyshev’s inequality for Hilbert space valued random elements

Show full item record

contributor authorBudny, Katarzyna
date accessioned2020-03-12T16:46:38Z
date available2020-03-12T16:46:38Z
date issued2014
identifier issn0167-7152
identifier other10.1016-j.spl.2014.01.021.pdf
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/932808
formatgeneral
languageEnglish
publisherElsevier Science
titleA generalization of Chebyshev’s inequality for Hilbert space valued random elements
typeJournal Paper
contenttypeMetadata Only
identifier padid7680291
subject keywordsChebyshev’s inequality
subject keywordsRandom vector
subject keywordsHilbert
identifier doi10.1016/j.spl.2014.01.021
journal titleStatistics & Probability Letters
journal volume88
journal issue0
filesize340236
citations0
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace